Primitive Type usize [−]
The pointer-sized unsigned integer type.
Methods
impl usize
const fn min_value() -> usize1.0.0
Returns the smallest value that can be represented by this integer type.
const fn max_value() -> usize1.0.0
Returns the largest value that can be represented by this integer type.
fn from_str_radix(src: &str, radix: u32) -> Result<usize, ParseIntError>1.0.0
Converts a string slice in a given base to an integer.
Leading and trailing whitespace represent an error.
Examples
Basic usage:
fn main() { assert_eq!(u32::from_str_radix("A", 16), Ok(10)); }assert_eq!(u32::from_str_radix("A", 16), Ok(10));
fn count_ones(self) -> u321.0.0
Returns the number of ones in the binary representation of self.
Examples
Basic usage:
fn main() { let n = 0b01001100u8; assert_eq!(n.count_ones(), 3); }let n = 0b01001100u8; assert_eq!(n.count_ones(), 3);
fn count_zeros(self) -> u321.0.0
Returns the number of zeros in the binary representation of self.
Examples
Basic usage:
fn main() { let n = 0b01001100u8; assert_eq!(n.count_zeros(), 5); }let n = 0b01001100u8; assert_eq!(n.count_zeros(), 5);
fn leading_zeros(self) -> u321.0.0
Returns the number of leading zeros in the binary representation
of self.
Examples
Basic usage:
fn main() { let n = 0b0101000u16; assert_eq!(n.leading_zeros(), 10); }let n = 0b0101000u16; assert_eq!(n.leading_zeros(), 10);
fn trailing_zeros(self) -> u321.0.0
Returns the number of trailing zeros in the binary representation
of self.
Examples
Basic usage:
fn main() { let n = 0b0101000u16; assert_eq!(n.trailing_zeros(), 3); }let n = 0b0101000u16; assert_eq!(n.trailing_zeros(), 3);
fn rotate_left(self, n: u32) -> usize1.0.0
Shifts the bits to the left by a specified amount, n,
wrapping the truncated bits to the end of the resulting integer.
Examples
Basic usage:
fn main() { let n = 0x0123456789ABCDEFu64; let m = 0x3456789ABCDEF012u64; assert_eq!(n.rotate_left(12), m); }let n = 0x0123456789ABCDEFu64; let m = 0x3456789ABCDEF012u64; assert_eq!(n.rotate_left(12), m);
fn rotate_right(self, n: u32) -> usize1.0.0
Shifts the bits to the right by a specified amount, n,
wrapping the truncated bits to the beginning of the resulting
integer.
Examples
Basic usage:
fn main() { let n = 0x0123456789ABCDEFu64; let m = 0xDEF0123456789ABCu64; assert_eq!(n.rotate_right(12), m); }let n = 0x0123456789ABCDEFu64; let m = 0xDEF0123456789ABCu64; assert_eq!(n.rotate_right(12), m);
fn swap_bytes(self) -> usize1.0.0
Reverses the byte order of the integer.
Examples
Basic usage:
fn main() { let n = 0x0123456789ABCDEFu64; let m = 0xEFCDAB8967452301u64; assert_eq!(n.swap_bytes(), m); }let n = 0x0123456789ABCDEFu64; let m = 0xEFCDAB8967452301u64; assert_eq!(n.swap_bytes(), m);
fn from_be(x: usize) -> usize1.0.0
Converts an integer from big endian to the target's endianness.
On big endian this is a no-op. On little endian the bytes are swapped.
Examples
Basic usage:
fn main() { let n = 0x0123456789ABCDEFu64; if cfg!(target_endian = "big") { assert_eq!(u64::from_be(n), n) } else { assert_eq!(u64::from_be(n), n.swap_bytes()) } }let n = 0x0123456789ABCDEFu64; if cfg!(target_endian = "big") { assert_eq!(u64::from_be(n), n) } else { assert_eq!(u64::from_be(n), n.swap_bytes()) }
fn from_le(x: usize) -> usize1.0.0
Converts an integer from little endian to the target's endianness.
On little endian this is a no-op. On big endian the bytes are swapped.
Examples
Basic usage:
fn main() { let n = 0x0123456789ABCDEFu64; if cfg!(target_endian = "little") { assert_eq!(u64::from_le(n), n) } else { assert_eq!(u64::from_le(n), n.swap_bytes()) } }let n = 0x0123456789ABCDEFu64; if cfg!(target_endian = "little") { assert_eq!(u64::from_le(n), n) } else { assert_eq!(u64::from_le(n), n.swap_bytes()) }
fn to_be(self) -> usize1.0.0
Converts self to big endian from the target's endianness.
On big endian this is a no-op. On little endian the bytes are swapped.
Examples
Basic usage:
fn main() { let n = 0x0123456789ABCDEFu64; if cfg!(target_endian = "big") { assert_eq!(n.to_be(), n) } else { assert_eq!(n.to_be(), n.swap_bytes()) } }let n = 0x0123456789ABCDEFu64; if cfg!(target_endian = "big") { assert_eq!(n.to_be(), n) } else { assert_eq!(n.to_be(), n.swap_bytes()) }
fn to_le(self) -> usize1.0.0
Converts self to little endian from the target's endianness.
On little endian this is a no-op. On big endian the bytes are swapped.
Examples
Basic usage:
fn main() { let n = 0x0123456789ABCDEFu64; if cfg!(target_endian = "little") { assert_eq!(n.to_le(), n) } else { assert_eq!(n.to_le(), n.swap_bytes()) } }let n = 0x0123456789ABCDEFu64; if cfg!(target_endian = "little") { assert_eq!(n.to_le(), n) } else { assert_eq!(n.to_le(), n.swap_bytes()) }
fn checked_add(self, other: usize) -> Option<usize>1.0.0
Checked integer addition. Computes self + other, returning None
if overflow occurred.
Examples
Basic usage:
fn main() { assert_eq!(5u16.checked_add(65530), Some(65535)); assert_eq!(6u16.checked_add(65530), None); }assert_eq!(5u16.checked_add(65530), Some(65535)); assert_eq!(6u16.checked_add(65530), None);
fn checked_sub(self, other: usize) -> Option<usize>1.0.0
Checked integer subtraction. Computes self - other, returning
None if underflow occurred.
Examples
Basic usage:
fn main() { assert_eq!(1u8.checked_sub(1), Some(0)); assert_eq!(0u8.checked_sub(1), None); }assert_eq!(1u8.checked_sub(1), Some(0)); assert_eq!(0u8.checked_sub(1), None);
fn checked_mul(self, other: usize) -> Option<usize>1.0.0
Checked integer multiplication. Computes self * other, returning
None if underflow or overflow occurred.
Examples
Basic usage:
fn main() { assert_eq!(5u8.checked_mul(51), Some(255)); assert_eq!(5u8.checked_mul(52), None); }assert_eq!(5u8.checked_mul(51), Some(255)); assert_eq!(5u8.checked_mul(52), None);
fn checked_div(self, other: usize) -> Option<usize>1.0.0
Checked integer division. Computes self / other, returning None
if other == 0 or the operation results in underflow or overflow.
Examples
Basic usage:
fn main() { assert_eq!(128u8.checked_div(2), Some(64)); assert_eq!(1u8.checked_div(0), None); }assert_eq!(128u8.checked_div(2), Some(64)); assert_eq!(1u8.checked_div(0), None);
fn checked_rem(self, other: usize) -> Option<usize>1.7.0
Checked integer remainder. Computes self % other, returning None
if other == 0 or the operation results in underflow or overflow.
Examples
Basic usage:
fn main() { assert_eq!(5u32.checked_rem(2), Some(1)); assert_eq!(5u32.checked_rem(0), None); }assert_eq!(5u32.checked_rem(2), Some(1)); assert_eq!(5u32.checked_rem(0), None);
fn checked_neg(self) -> Option<usize>1.7.0
Checked negation. Computes -self, returning None unless self == 0.
Note that negating any positive integer will overflow.
Examples
Basic usage:
fn main() { assert_eq!(0u32.checked_neg(), Some(0)); assert_eq!(1u32.checked_neg(), None); }assert_eq!(0u32.checked_neg(), Some(0)); assert_eq!(1u32.checked_neg(), None);
fn checked_shl(self, rhs: u32) -> Option<usize>1.7.0
Checked shift left. Computes self << rhs, returning None
if rhs is larger than or equal to the number of bits in self.
Examples
Basic usage:
fn main() { assert_eq!(0x10u32.checked_shl(4), Some(0x100)); assert_eq!(0x10u32.checked_shl(33), None); }assert_eq!(0x10u32.checked_shl(4), Some(0x100)); assert_eq!(0x10u32.checked_shl(33), None);
fn checked_shr(self, rhs: u32) -> Option<usize>1.7.0
Checked shift right. Computes self >> rhs, returning None
if rhs is larger than or equal to the number of bits in self.
Examples
Basic usage:
fn main() { assert_eq!(0x10u32.checked_shr(4), Some(0x1)); assert_eq!(0x10u32.checked_shr(33), None); }assert_eq!(0x10u32.checked_shr(4), Some(0x1)); assert_eq!(0x10u32.checked_shr(33), None);
fn saturating_add(self, other: usize) -> usize1.0.0
Saturating integer addition. Computes self + other, saturating at
the numeric bounds instead of overflowing.
Examples
Basic usage:
fn main() { assert_eq!(100u8.saturating_add(1), 101); assert_eq!(200u8.saturating_add(127), 255); }assert_eq!(100u8.saturating_add(1), 101); assert_eq!(200u8.saturating_add(127), 255);
fn saturating_sub(self, other: usize) -> usize1.0.0
Saturating integer subtraction. Computes self - other, saturating
at the numeric bounds instead of overflowing.
Examples
Basic usage:
fn main() { assert_eq!(100u8.saturating_sub(27), 73); assert_eq!(13u8.saturating_sub(127), 0); }assert_eq!(100u8.saturating_sub(27), 73); assert_eq!(13u8.saturating_sub(127), 0);
fn saturating_mul(self, other: usize) -> usize1.7.0
Saturating integer multiplication. Computes self * other,
saturating at the numeric bounds instead of overflowing.
Examples
Basic usage:
fn main() { use std::u32; assert_eq!(100u32.saturating_mul(127), 12700); assert_eq!((1u32 << 23).saturating_mul(1 << 23), u32::MAX); }use std::u32; assert_eq!(100u32.saturating_mul(127), 12700); assert_eq!((1u32 << 23).saturating_mul(1 << 23), u32::MAX);
fn wrapping_add(self, rhs: usize) -> usize1.0.0
Wrapping (modular) addition. Computes self + other,
wrapping around at the boundary of the type.
Examples
Basic usage:
fn main() { assert_eq!(200u8.wrapping_add(55), 255); assert_eq!(200u8.wrapping_add(155), 99); }assert_eq!(200u8.wrapping_add(55), 255); assert_eq!(200u8.wrapping_add(155), 99);
fn wrapping_sub(self, rhs: usize) -> usize1.0.0
Wrapping (modular) subtraction. Computes self - other,
wrapping around at the boundary of the type.
Examples
Basic usage:
fn main() { assert_eq!(100u8.wrapping_sub(100), 0); assert_eq!(100u8.wrapping_sub(155), 201); }assert_eq!(100u8.wrapping_sub(100), 0); assert_eq!(100u8.wrapping_sub(155), 201);
fn wrapping_mul(self, rhs: usize) -> usize1.0.0
Wrapping (modular) multiplication. Computes self * other, wrapping around at the boundary of the type.
Examples
Basic usage:
fn main() { assert_eq!(10u8.wrapping_mul(12), 120); assert_eq!(25u8.wrapping_mul(12), 44); }assert_eq!(10u8.wrapping_mul(12), 120); assert_eq!(25u8.wrapping_mul(12), 44);
fn wrapping_div(self, rhs: usize) -> usize1.2.0
Wrapping (modular) division. Computes self / other.
Wrapped division on unsigned types is just normal division.
There's no way wrapping could ever happen.
This function exists, so that all operations
are accounted for in the wrapping operations.
Examples
Basic usage:
fn main() { assert_eq!(100u8.wrapping_div(10), 10); }assert_eq!(100u8.wrapping_div(10), 10);
fn wrapping_rem(self, rhs: usize) -> usize1.2.0
Wrapping (modular) remainder. Computes self % other.
Wrapped remainder calculation on unsigned types is
just the regular remainder calculation.
There's no way wrapping could ever happen.
This function exists, so that all operations
are accounted for in the wrapping operations.
Examples
Basic usage:
fn main() { assert_eq!(100u8.wrapping_rem(10), 0); }assert_eq!(100u8.wrapping_rem(10), 0);
fn wrapping_neg(self) -> usize1.2.0
Wrapping (modular) negation. Computes -self,
wrapping around at the boundary of the type.
Since unsigned types do not have negative equivalents
all applications of this function will wrap (except for -0).
For values smaller than the corresponding signed type's maximum
the result is the same as casting the corresponding signed value.
Any larger values are equivalent to MAX + 1 - (val - MAX - 1) where
MAX is the corresponding signed type's maximum.
Examples
Basic usage:
fn main() { assert_eq!(100u8.wrapping_neg(), 156); assert_eq!(0u8.wrapping_neg(), 0); assert_eq!(180u8.wrapping_neg(), 76); assert_eq!(180u8.wrapping_neg(), (127 + 1) - (180u8 - (127 + 1))); }assert_eq!(100u8.wrapping_neg(), 156); assert_eq!(0u8.wrapping_neg(), 0); assert_eq!(180u8.wrapping_neg(), 76); assert_eq!(180u8.wrapping_neg(), (127 + 1) - (180u8 - (127 + 1)));
fn wrapping_shl(self, rhs: u32) -> usize1.2.0
Panic-free bitwise shift-left; yields self << mask(rhs),
where mask removes any high-order bits of rhs that
would cause the shift to exceed the bitwidth of the type.
Note that this is not the same as a rotate-left; the
RHS of a wrapping shift-left is restricted to the range
of the type, rather than the bits shifted out of the LHS
being returned to the other end. The primitive integer
types all implement a rotate_left function, which may
be what you want instead.
Examples
Basic usage:
fn main() { assert_eq!(1u8.wrapping_shl(7), 128); assert_eq!(1u8.wrapping_shl(8), 1); }assert_eq!(1u8.wrapping_shl(7), 128); assert_eq!(1u8.wrapping_shl(8), 1);
fn wrapping_shr(self, rhs: u32) -> usize1.2.0
Panic-free bitwise shift-right; yields self >> mask(rhs),
where mask removes any high-order bits of rhs that
would cause the shift to exceed the bitwidth of the type.
Note that this is not the same as a rotate-right; the
RHS of a wrapping shift-right is restricted to the range
of the type, rather than the bits shifted out of the LHS
being returned to the other end. The primitive integer
types all implement a rotate_right function, which may
be what you want instead.
Examples
Basic usage:
fn main() { assert_eq!(128u8.wrapping_shr(7), 1); assert_eq!(128u8.wrapping_shr(8), 128); }assert_eq!(128u8.wrapping_shr(7), 1); assert_eq!(128u8.wrapping_shr(8), 128);
fn overflowing_add(self, rhs: usize) -> (usize, bool)1.7.0
Calculates self + rhs
Returns a tuple of the addition along with a boolean indicating whether an arithmetic overflow would occur. If an overflow would have occurred then the wrapped value is returned.
Examples
Basic usage
fn main() { use std::u32; assert_eq!(5u32.overflowing_add(2), (7, false)); assert_eq!(u32::MAX.overflowing_add(1), (0, true)); }use std::u32; assert_eq!(5u32.overflowing_add(2), (7, false)); assert_eq!(u32::MAX.overflowing_add(1), (0, true));
fn overflowing_sub(self, rhs: usize) -> (usize, bool)1.7.0
Calculates self - rhs
Returns a tuple of the subtraction along with a boolean indicating whether an arithmetic overflow would occur. If an overflow would have occurred then the wrapped value is returned.
Examples
Basic usage
fn main() { use std::u32; assert_eq!(5u32.overflowing_sub(2), (3, false)); assert_eq!(0u32.overflowing_sub(1), (u32::MAX, true)); }use std::u32; assert_eq!(5u32.overflowing_sub(2), (3, false)); assert_eq!(0u32.overflowing_sub(1), (u32::MAX, true));
fn overflowing_mul(self, rhs: usize) -> (usize, bool)1.7.0
Calculates the multiplication of self and rhs.
Returns a tuple of the multiplication along with a boolean indicating whether an arithmetic overflow would occur. If an overflow would have occurred then the wrapped value is returned.
Examples
Basic usage
fn main() { assert_eq!(5u32.overflowing_mul(2), (10, false)); assert_eq!(1_000_000_000u32.overflowing_mul(10), (1410065408, true)); }assert_eq!(5u32.overflowing_mul(2), (10, false)); assert_eq!(1_000_000_000u32.overflowing_mul(10), (1410065408, true));
fn overflowing_div(self, rhs: usize) -> (usize, bool)1.7.0
Calculates the divisor when self is divided by rhs.
Returns a tuple of the divisor along with a boolean indicating
whether an arithmetic overflow would occur. Note that for unsigned
integers overflow never occurs, so the second value is always
false.
Panics
This function will panic if rhs is 0.
Examples
Basic usage
fn main() { assert_eq!(5u32.overflowing_div(2), (2, false)); }assert_eq!(5u32.overflowing_div(2), (2, false));
fn overflowing_rem(self, rhs: usize) -> (usize, bool)1.7.0
Calculates the remainder when self is divided by rhs.
Returns a tuple of the remainder after dividing along with a boolean
indicating whether an arithmetic overflow would occur. Note that for
unsigned integers overflow never occurs, so the second value is
always false.
Panics
This function will panic if rhs is 0.
Examples
Basic usage
fn main() { assert_eq!(5u32.overflowing_rem(2), (1, false)); }assert_eq!(5u32.overflowing_rem(2), (1, false));
fn overflowing_neg(self) -> (usize, bool)1.7.0
Negates self in an overflowing fashion.
Returns !self + 1 using wrapping operations to return the value
that represents the negation of this unsigned value. Note that for
positive unsigned values overflow always occurs, but negating 0 does
not overflow.
Examples
Basic usage
fn main() { assert_eq!(0u32.overflowing_neg(), (0, false)); assert_eq!(2u32.overflowing_neg(), (-2i32 as u32, true)); }assert_eq!(0u32.overflowing_neg(), (0, false)); assert_eq!(2u32.overflowing_neg(), (-2i32 as u32, true));
fn overflowing_shl(self, rhs: u32) -> (usize, bool)1.7.0
Shifts self left by rhs bits.
Returns a tuple of the shifted version of self along with a boolean indicating whether the shift value was larger than or equal to the number of bits. If the shift value is too large, then value is masked (N-1) where N is the number of bits, and this value is then used to perform the shift.
Examples
Basic usage
fn main() { assert_eq!(0x10u32.overflowing_shl(4), (0x100, false)); assert_eq!(0x10u32.overflowing_shl(36), (0x100, true)); }assert_eq!(0x10u32.overflowing_shl(4), (0x100, false)); assert_eq!(0x10u32.overflowing_shl(36), (0x100, true));
fn overflowing_shr(self, rhs: u32) -> (usize, bool)1.7.0
Shifts self right by rhs bits.
Returns a tuple of the shifted version of self along with a boolean indicating whether the shift value was larger than or equal to the number of bits. If the shift value is too large, then value is masked (N-1) where N is the number of bits, and this value is then used to perform the shift.
Examples
Basic usage
fn main() { assert_eq!(0x10u32.overflowing_shr(4), (0x1, false)); assert_eq!(0x10u32.overflowing_shr(36), (0x1, true)); }assert_eq!(0x10u32.overflowing_shr(4), (0x1, false)); assert_eq!(0x10u32.overflowing_shr(36), (0x1, true));
fn pow(self, exp: u32) -> usize1.0.0
Raises self to the power of exp, using exponentiation by squaring.
Examples
Basic usage:
fn main() { assert_eq!(2u32.pow(4), 16); }assert_eq!(2u32.pow(4), 16);
fn is_power_of_two(self) -> bool1.0.0
Returns true if and only if self == 2^k for some k.
Examples
Basic usage:
fn main() { assert!(16u8.is_power_of_two()); assert!(!10u8.is_power_of_two()); }assert!(16u8.is_power_of_two()); assert!(!10u8.is_power_of_two());
fn next_power_of_two(self) -> usize1.0.0
Returns the smallest power of two greater than or equal to self.
Unspecified behavior on overflow.
Examples
Basic usage:
fn main() { assert_eq!(2u8.next_power_of_two(), 2); assert_eq!(3u8.next_power_of_two(), 4); }assert_eq!(2u8.next_power_of_two(), 2); assert_eq!(3u8.next_power_of_two(), 4);
fn checked_next_power_of_two(self) -> Option<usize>1.0.0
Returns the smallest power of two greater than or equal to n. If
the next power of two is greater than the type's maximum value,
None is returned, otherwise the power of two is wrapped in Some.
Examples
Basic usage:
fn main() { assert_eq!(2u8.checked_next_power_of_two(), Some(2)); assert_eq!(3u8.checked_next_power_of_two(), Some(4)); assert_eq!(200u8.checked_next_power_of_two(), None); }assert_eq!(2u8.checked_next_power_of_two(), Some(2)); assert_eq!(3u8.checked_next_power_of_two(), Some(4)); assert_eq!(200u8.checked_next_power_of_two(), None);
Trait Implementations
impl Display for usize1.0.0
impl Debug for usize1.0.0
impl UpperHex for usize1.0.0
impl LowerHex for usize1.0.0
impl Octal for usize1.0.0
impl Binary for usize1.0.0
impl Hash for usize1.0.0
fn hash<H>(&self, state: &mut H) where H: Hasher
fn hash_slice<H>(data: &[usize], state: &mut H) where H: Hasher
impl Step for usize
fn step(&self, by: &usize) -> Option<usize>
fn steps_between(start: &usize, end: &usize, by: &usize) -> Option<usize>
impl Default for usize1.0.0
impl Clone for usize1.0.0
fn clone(&self) -> usize
Returns a deep copy of the value.
fn clone_from(&mut self, source: &Self)1.0.0
impl Ord for usize1.0.0
impl PartialOrd<usize> for usize1.0.0
fn partial_cmp(&self, other: &usize) -> Option<Ordering>
fn lt(&self, other: &usize) -> bool
fn le(&self, other: &usize) -> bool
fn ge(&self, other: &usize) -> bool
fn gt(&self, other: &usize) -> bool
impl Eq for usize1.0.0
impl PartialEq<usize> for usize1.0.0
impl ShrAssign<isize> for usize1.8.0
fn shr_assign(&mut self, other: isize)
impl ShrAssign<i64> for usize1.8.0
fn shr_assign(&mut self, other: i64)
impl ShrAssign<i32> for usize1.8.0
fn shr_assign(&mut self, other: i32)
impl ShrAssign<i16> for usize1.8.0
fn shr_assign(&mut self, other: i16)
impl ShrAssign<i8> for usize1.8.0
fn shr_assign(&mut self, other: i8)
impl ShrAssign<usize> for usize1.8.0
fn shr_assign(&mut self, other: usize)
impl ShrAssign<u64> for usize1.8.0
fn shr_assign(&mut self, other: u64)
impl ShrAssign<u32> for usize1.8.0
fn shr_assign(&mut self, other: u32)
impl ShrAssign<u16> for usize1.8.0
fn shr_assign(&mut self, other: u16)
impl ShrAssign<u8> for usize1.8.0
fn shr_assign(&mut self, other: u8)
impl ShlAssign<isize> for usize1.8.0
fn shl_assign(&mut self, other: isize)
impl ShlAssign<i64> for usize1.8.0
fn shl_assign(&mut self, other: i64)
impl ShlAssign<i32> for usize1.8.0
fn shl_assign(&mut self, other: i32)
impl ShlAssign<i16> for usize1.8.0
fn shl_assign(&mut self, other: i16)
impl ShlAssign<i8> for usize1.8.0
fn shl_assign(&mut self, other: i8)
impl ShlAssign<usize> for usize1.8.0
fn shl_assign(&mut self, other: usize)
impl ShlAssign<u64> for usize1.8.0
fn shl_assign(&mut self, other: u64)
impl ShlAssign<u32> for usize1.8.0
fn shl_assign(&mut self, other: u32)
impl ShlAssign<u16> for usize1.8.0
fn shl_assign(&mut self, other: u16)
impl ShlAssign<u8> for usize1.8.0
fn shl_assign(&mut self, other: u8)
impl BitXorAssign<usize> for usize1.8.0
fn bitxor_assign(&mut self, other: usize)
impl BitOrAssign<usize> for usize1.8.0
fn bitor_assign(&mut self, other: usize)
impl BitAndAssign<usize> for usize1.8.0
fn bitand_assign(&mut self, other: usize)
impl RemAssign<usize> for usize1.8.0
fn rem_assign(&mut self, other: usize)
impl DivAssign<usize> for usize1.8.0
fn div_assign(&mut self, other: usize)
impl MulAssign<usize> for usize1.8.0
fn mul_assign(&mut self, other: usize)
impl SubAssign<usize> for usize1.8.0
fn sub_assign(&mut self, other: usize)
impl AddAssign<usize> for usize1.8.0
fn add_assign(&mut self, other: usize)
impl<'a, 'b> Shr<&'a isize> for &'b usize1.0.0
impl<'a> Shr<&'a isize> for usize1.0.0
impl<'a> Shr<isize> for &'a usize1.0.0
impl Shr<isize> for usize1.0.0
impl<'a, 'b> Shr<&'a i64> for &'b usize1.0.0
impl<'a> Shr<&'a i64> for usize1.0.0
impl<'a> Shr<i64> for &'a usize1.0.0
impl Shr<i64> for usize1.0.0
impl<'a, 'b> Shr<&'a i32> for &'b usize1.0.0
impl<'a> Shr<&'a i32> for usize1.0.0
impl<'a> Shr<i32> for &'a usize1.0.0
impl Shr<i32> for usize1.0.0
impl<'a, 'b> Shr<&'a i16> for &'b usize1.0.0
impl<'a> Shr<&'a i16> for usize1.0.0
impl<'a> Shr<i16> for &'a usize1.0.0
impl Shr<i16> for usize1.0.0
impl<'a, 'b> Shr<&'a i8> for &'b usize1.0.0
impl<'a> Shr<&'a i8> for usize1.0.0
impl<'a> Shr<i8> for &'a usize1.0.0
impl Shr<i8> for usize1.0.0
impl<'a, 'b> Shr<&'a usize> for &'b usize1.0.0
impl<'a> Shr<&'a usize> for usize1.0.0
impl<'a> Shr<usize> for &'a usize1.0.0
impl Shr<usize> for usize1.0.0
impl<'a, 'b> Shr<&'a u64> for &'b usize1.0.0
impl<'a> Shr<&'a u64> for usize1.0.0
impl<'a> Shr<u64> for &'a usize1.0.0
impl Shr<u64> for usize1.0.0
impl<'a, 'b> Shr<&'a u32> for &'b usize1.0.0
impl<'a> Shr<&'a u32> for usize1.0.0
impl<'a> Shr<u32> for &'a usize1.0.0
impl Shr<u32> for usize1.0.0
impl<'a, 'b> Shr<&'a u16> for &'b usize1.0.0
impl<'a> Shr<&'a u16> for usize1.0.0
impl<'a> Shr<u16> for &'a usize1.0.0
impl Shr<u16> for usize1.0.0
impl<'a, 'b> Shr<&'a u8> for &'b usize1.0.0
impl<'a> Shr<&'a u8> for usize1.0.0
impl<'a> Shr<u8> for &'a usize1.0.0
impl Shr<u8> for usize1.0.0
impl<'a, 'b> Shl<&'a isize> for &'b usize1.0.0
impl<'a> Shl<&'a isize> for usize1.0.0
impl<'a> Shl<isize> for &'a usize1.0.0
impl Shl<isize> for usize1.0.0
impl<'a, 'b> Shl<&'a i64> for &'b usize1.0.0
impl<'a> Shl<&'a i64> for usize1.0.0
impl<'a> Shl<i64> for &'a usize1.0.0
impl Shl<i64> for usize1.0.0
impl<'a, 'b> Shl<&'a i32> for &'b usize1.0.0
impl<'a> Shl<&'a i32> for usize1.0.0
impl<'a> Shl<i32> for &'a usize1.0.0
impl Shl<i32> for usize1.0.0
impl<'a, 'b> Shl<&'a i16> for &'b usize1.0.0
impl<'a> Shl<&'a i16> for usize1.0.0
impl<'a> Shl<i16> for &'a usize1.0.0
impl Shl<i16> for usize1.0.0
impl<'a, 'b> Shl<&'a i8> for &'b usize1.0.0
impl<'a> Shl<&'a i8> for usize1.0.0
impl<'a> Shl<i8> for &'a usize1.0.0
impl Shl<i8> for usize1.0.0
impl<'a, 'b> Shl<&'a usize> for &'b usize1.0.0
impl<'a> Shl<&'a usize> for usize1.0.0
impl<'a> Shl<usize> for &'a usize1.0.0
impl Shl<usize> for usize1.0.0
impl<'a, 'b> Shl<&'a u64> for &'b usize1.0.0
impl<'a> Shl<&'a u64> for usize1.0.0
impl<'a> Shl<u64> for &'a usize1.0.0
impl Shl<u64> for usize1.0.0
impl<'a, 'b> Shl<&'a u32> for &'b usize1.0.0
impl<'a> Shl<&'a u32> for usize1.0.0
impl<'a> Shl<u32> for &'a usize1.0.0
impl Shl<u32> for usize1.0.0
impl<'a, 'b> Shl<&'a u16> for &'b usize1.0.0
impl<'a> Shl<&'a u16> for usize1.0.0
impl<'a> Shl<u16> for &'a usize1.0.0
impl Shl<u16> for usize1.0.0
impl<'a, 'b> Shl<&'a u8> for &'b usize1.0.0
impl<'a> Shl<&'a u8> for usize1.0.0
impl<'a> Shl<u8> for &'a usize1.0.0
impl Shl<u8> for usize1.0.0
impl<'a, 'b> BitXor<&'a usize> for &'b usize1.0.0
impl<'a> BitXor<&'a usize> for usize1.0.0
impl<'a> BitXor<usize> for &'a usize1.0.0
impl BitXor<usize> for usize1.0.0
impl<'a, 'b> BitOr<&'a usize> for &'b usize1.0.0
impl<'a> BitOr<&'a usize> for usize1.0.0
impl<'a> BitOr<usize> for &'a usize1.0.0
impl BitOr<usize> for usize1.0.0
impl<'a, 'b> BitAnd<&'a usize> for &'b usize1.0.0
impl<'a> BitAnd<&'a usize> for usize1.0.0
impl<'a> BitAnd<usize> for &'a usize1.0.0
impl BitAnd<usize> for usize1.0.0
impl<'a> Not for &'a usize1.0.0
impl Not for usize1.0.0
impl<'a, 'b> Rem<&'a usize> for &'b usize1.0.0
impl<'a> Rem<&'a usize> for usize1.0.0
impl<'a> Rem<usize> for &'a usize1.0.0
impl Rem<usize> for usize1.0.0
This operation satisfies n % d == n - (n / d) * d. The
result has the same sign as the left operand.
impl<'a, 'b> Div<&'a usize> for &'b usize1.0.0
impl<'a> Div<&'a usize> for usize1.0.0
impl<'a> Div<usize> for &'a usize1.0.0
impl Div<usize> for usize1.0.0
This operation rounds towards zero, truncating any fractional part of the exact result.