Primitive Type u32 []

The 32-bit unsigned integer type.

See also the std::u32 module.

Methods

impl u32

const fn min_value() -> u321.0.0

Returns the smallest value that can be represented by this integer type.

const fn max_value() -> u321.0.0

Returns the largest value that can be represented by this integer type.

fn from_str_radix(src: &str, radix: u32) -> Result<u32, ParseIntError>1.0.0

Converts a string slice in a given base to an integer.

Leading and trailing whitespace represent an error.

Examples

Basic usage:

fn main() { assert_eq!(u32::from_str_radix("A", 16), Ok(10)); }
assert_eq!(u32::from_str_radix("A", 16), Ok(10));

fn count_ones(self) -> u321.0.0

Returns the number of ones in the binary representation of self.

Examples

Basic usage:

fn main() { let n = 0b01001100u8; assert_eq!(n.count_ones(), 3); }
let n = 0b01001100u8;

assert_eq!(n.count_ones(), 3);

fn count_zeros(self) -> u321.0.0

Returns the number of zeros in the binary representation of self.

Examples

Basic usage:

fn main() { let n = 0b01001100u8; assert_eq!(n.count_zeros(), 5); }
let n = 0b01001100u8;

assert_eq!(n.count_zeros(), 5);

fn leading_zeros(self) -> u321.0.0

Returns the number of leading zeros in the binary representation of self.

Examples

Basic usage:

fn main() { let n = 0b0101000u16; assert_eq!(n.leading_zeros(), 10); }
let n = 0b0101000u16;

assert_eq!(n.leading_zeros(), 10);

fn trailing_zeros(self) -> u321.0.0

Returns the number of trailing zeros in the binary representation of self.

Examples

Basic usage:

fn main() { let n = 0b0101000u16; assert_eq!(n.trailing_zeros(), 3); }
let n = 0b0101000u16;

assert_eq!(n.trailing_zeros(), 3);

fn rotate_left(self, n: u32) -> u321.0.0

Shifts the bits to the left by a specified amount, n, wrapping the truncated bits to the end of the resulting integer.

Examples

Basic usage:

fn main() { let n = 0x0123456789ABCDEFu64; let m = 0x3456789ABCDEF012u64; assert_eq!(n.rotate_left(12), m); }
let n = 0x0123456789ABCDEFu64;
let m = 0x3456789ABCDEF012u64;

assert_eq!(n.rotate_left(12), m);

fn rotate_right(self, n: u32) -> u321.0.0

Shifts the bits to the right by a specified amount, n, wrapping the truncated bits to the beginning of the resulting integer.

Examples

Basic usage:

fn main() { let n = 0x0123456789ABCDEFu64; let m = 0xDEF0123456789ABCu64; assert_eq!(n.rotate_right(12), m); }
let n = 0x0123456789ABCDEFu64;
let m = 0xDEF0123456789ABCu64;

assert_eq!(n.rotate_right(12), m);

fn swap_bytes(self) -> u321.0.0

Reverses the byte order of the integer.

Examples

Basic usage:

fn main() { let n = 0x0123456789ABCDEFu64; let m = 0xEFCDAB8967452301u64; assert_eq!(n.swap_bytes(), m); }
let n = 0x0123456789ABCDEFu64;
let m = 0xEFCDAB8967452301u64;

assert_eq!(n.swap_bytes(), m);

fn from_be(x: u32) -> u321.0.0

Converts an integer from big endian to the target's endianness.

On big endian this is a no-op. On little endian the bytes are swapped.

Examples

Basic usage:

fn main() { let n = 0x0123456789ABCDEFu64; if cfg!(target_endian = "big") { assert_eq!(u64::from_be(n), n) } else { assert_eq!(u64::from_be(n), n.swap_bytes()) } }
let n = 0x0123456789ABCDEFu64;

if cfg!(target_endian = "big") {
    assert_eq!(u64::from_be(n), n)
} else {
    assert_eq!(u64::from_be(n), n.swap_bytes())
}

fn from_le(x: u32) -> u321.0.0

Converts an integer from little endian to the target's endianness.

On little endian this is a no-op. On big endian the bytes are swapped.

Examples

Basic usage:

fn main() { let n = 0x0123456789ABCDEFu64; if cfg!(target_endian = "little") { assert_eq!(u64::from_le(n), n) } else { assert_eq!(u64::from_le(n), n.swap_bytes()) } }
let n = 0x0123456789ABCDEFu64;

if cfg!(target_endian = "little") {
    assert_eq!(u64::from_le(n), n)
} else {
    assert_eq!(u64::from_le(n), n.swap_bytes())
}

fn to_be(self) -> u321.0.0

Converts self to big endian from the target's endianness.

On big endian this is a no-op. On little endian the bytes are swapped.

Examples

Basic usage:

fn main() { let n = 0x0123456789ABCDEFu64; if cfg!(target_endian = "big") { assert_eq!(n.to_be(), n) } else { assert_eq!(n.to_be(), n.swap_bytes()) } }
let n = 0x0123456789ABCDEFu64;

if cfg!(target_endian = "big") {
    assert_eq!(n.to_be(), n)
} else {
    assert_eq!(n.to_be(), n.swap_bytes())
}

fn to_le(self) -> u321.0.0

Converts self to little endian from the target's endianness.

On little endian this is a no-op. On big endian the bytes are swapped.

Examples

Basic usage:

fn main() { let n = 0x0123456789ABCDEFu64; if cfg!(target_endian = "little") { assert_eq!(n.to_le(), n) } else { assert_eq!(n.to_le(), n.swap_bytes()) } }
let n = 0x0123456789ABCDEFu64;

if cfg!(target_endian = "little") {
    assert_eq!(n.to_le(), n)
} else {
    assert_eq!(n.to_le(), n.swap_bytes())
}

fn checked_add(self, other: u32) -> Option<u32>1.0.0

Checked integer addition. Computes self + other, returning None if overflow occurred.

Examples

Basic usage:

fn main() { assert_eq!(5u16.checked_add(65530), Some(65535)); assert_eq!(6u16.checked_add(65530), None); }
assert_eq!(5u16.checked_add(65530), Some(65535));
assert_eq!(6u16.checked_add(65530), None);

fn checked_sub(self, other: u32) -> Option<u32>1.0.0

Checked integer subtraction. Computes self - other, returning None if underflow occurred.

Examples

Basic usage:

fn main() { assert_eq!(1u8.checked_sub(1), Some(0)); assert_eq!(0u8.checked_sub(1), None); }
assert_eq!(1u8.checked_sub(1), Some(0));
assert_eq!(0u8.checked_sub(1), None);

fn checked_mul(self, other: u32) -> Option<u32>1.0.0

Checked integer multiplication. Computes self * other, returning None if underflow or overflow occurred.

Examples

Basic usage:

fn main() { assert_eq!(5u8.checked_mul(51), Some(255)); assert_eq!(5u8.checked_mul(52), None); }
assert_eq!(5u8.checked_mul(51), Some(255));
assert_eq!(5u8.checked_mul(52), None);

fn checked_div(self, other: u32) -> Option<u32>1.0.0

Checked integer division. Computes self / other, returning None if other == 0 or the operation results in underflow or overflow.

Examples

Basic usage:

fn main() { assert_eq!(128u8.checked_div(2), Some(64)); assert_eq!(1u8.checked_div(0), None); }
assert_eq!(128u8.checked_div(2), Some(64));
assert_eq!(1u8.checked_div(0), None);

fn checked_rem(self, other: u32) -> Option<u32>1.7.0

Checked integer remainder. Computes self % other, returning None if other == 0 or the operation results in underflow or overflow.

Examples

Basic usage:

fn main() { assert_eq!(5u32.checked_rem(2), Some(1)); assert_eq!(5u32.checked_rem(0), None); }
assert_eq!(5u32.checked_rem(2), Some(1));
assert_eq!(5u32.checked_rem(0), None);

fn checked_neg(self) -> Option<u32>1.7.0

Checked negation. Computes -self, returning None unless self == 0.

Note that negating any positive integer will overflow.

Examples

Basic usage:

fn main() { assert_eq!(0u32.checked_neg(), Some(0)); assert_eq!(1u32.checked_neg(), None); }
assert_eq!(0u32.checked_neg(), Some(0));
assert_eq!(1u32.checked_neg(), None);

fn checked_shl(self, rhs: u32) -> Option<u32>1.7.0

Checked shift left. Computes self << rhs, returning None if rhs is larger than or equal to the number of bits in self.

Examples

Basic usage:

fn main() { assert_eq!(0x10u32.checked_shl(4), Some(0x100)); assert_eq!(0x10u32.checked_shl(33), None); }
assert_eq!(0x10u32.checked_shl(4), Some(0x100));
assert_eq!(0x10u32.checked_shl(33), None);

fn checked_shr(self, rhs: u32) -> Option<u32>1.7.0

Checked shift right. Computes self >> rhs, returning None if rhs is larger than or equal to the number of bits in self.

Examples

Basic usage:

fn main() { assert_eq!(0x10u32.checked_shr(4), Some(0x1)); assert_eq!(0x10u32.checked_shr(33), None); }
assert_eq!(0x10u32.checked_shr(4), Some(0x1));
assert_eq!(0x10u32.checked_shr(33), None);

fn saturating_add(self, other: u32) -> u321.0.0

Saturating integer addition. Computes self + other, saturating at the numeric bounds instead of overflowing.

Examples

Basic usage:

fn main() { assert_eq!(100u8.saturating_add(1), 101); assert_eq!(200u8.saturating_add(127), 255); }
assert_eq!(100u8.saturating_add(1), 101);
assert_eq!(200u8.saturating_add(127), 255);

fn saturating_sub(self, other: u32) -> u321.0.0

Saturating integer subtraction. Computes self - other, saturating at the numeric bounds instead of overflowing.

Examples

Basic usage:

fn main() { assert_eq!(100u8.saturating_sub(27), 73); assert_eq!(13u8.saturating_sub(127), 0); }
assert_eq!(100u8.saturating_sub(27), 73);
assert_eq!(13u8.saturating_sub(127), 0);

fn saturating_mul(self, other: u32) -> u321.7.0

Saturating integer multiplication. Computes self * other, saturating at the numeric bounds instead of overflowing.

Examples

Basic usage:

fn main() { use std::u32; assert_eq!(100u32.saturating_mul(127), 12700); assert_eq!((1u32 << 23).saturating_mul(1 << 23), u32::MAX); }
use std::u32;

assert_eq!(100u32.saturating_mul(127), 12700);
assert_eq!((1u32 << 23).saturating_mul(1 << 23), u32::MAX);

fn wrapping_add(self, rhs: u32) -> u321.0.0

Wrapping (modular) addition. Computes self + other, wrapping around at the boundary of the type.

Examples

Basic usage:

fn main() { assert_eq!(200u8.wrapping_add(55), 255); assert_eq!(200u8.wrapping_add(155), 99); }
assert_eq!(200u8.wrapping_add(55), 255);
assert_eq!(200u8.wrapping_add(155), 99);

fn wrapping_sub(self, rhs: u32) -> u321.0.0

Wrapping (modular) subtraction. Computes self - other, wrapping around at the boundary of the type.

Examples

Basic usage:

fn main() { assert_eq!(100u8.wrapping_sub(100), 0); assert_eq!(100u8.wrapping_sub(155), 201); }
assert_eq!(100u8.wrapping_sub(100), 0);
assert_eq!(100u8.wrapping_sub(155), 201);

fn wrapping_mul(self, rhs: u32) -> u321.0.0

Wrapping (modular) multiplication. Computes self * other, wrapping around at the boundary of the type.

Examples

Basic usage:

fn main() { assert_eq!(10u8.wrapping_mul(12), 120); assert_eq!(25u8.wrapping_mul(12), 44); }
assert_eq!(10u8.wrapping_mul(12), 120);
assert_eq!(25u8.wrapping_mul(12), 44);

fn wrapping_div(self, rhs: u32) -> u321.2.0

Wrapping (modular) division. Computes self / other. Wrapped division on unsigned types is just normal division. There's no way wrapping could ever happen. This function exists, so that all operations are accounted for in the wrapping operations.

Examples

Basic usage:

fn main() { assert_eq!(100u8.wrapping_div(10), 10); }
assert_eq!(100u8.wrapping_div(10), 10);

fn wrapping_rem(self, rhs: u32) -> u321.2.0

Wrapping (modular) remainder. Computes self % other. Wrapped remainder calculation on unsigned types is just the regular remainder calculation. There's no way wrapping could ever happen. This function exists, so that all operations are accounted for in the wrapping operations.

Examples

Basic usage:

fn main() { assert_eq!(100u8.wrapping_rem(10), 0); }
assert_eq!(100u8.wrapping_rem(10), 0);

fn wrapping_neg(self) -> u321.2.0

Wrapping (modular) negation. Computes -self, wrapping around at the boundary of the type.

Since unsigned types do not have negative equivalents all applications of this function will wrap (except for -0). For values smaller than the corresponding signed type's maximum the result is the same as casting the corresponding signed value. Any larger values are equivalent to MAX + 1 - (val - MAX - 1) where MAX is the corresponding signed type's maximum.

Examples

Basic usage:

fn main() { assert_eq!(100u8.wrapping_neg(), 156); assert_eq!(0u8.wrapping_neg(), 0); assert_eq!(180u8.wrapping_neg(), 76); assert_eq!(180u8.wrapping_neg(), (127 + 1) - (180u8 - (127 + 1))); }
assert_eq!(100u8.wrapping_neg(), 156);
assert_eq!(0u8.wrapping_neg(), 0);
assert_eq!(180u8.wrapping_neg(), 76);
assert_eq!(180u8.wrapping_neg(), (127 + 1) - (180u8 - (127 + 1)));

fn wrapping_shl(self, rhs: u32) -> u321.2.0

Panic-free bitwise shift-left; yields self << mask(rhs), where mask removes any high-order bits of rhs that would cause the shift to exceed the bitwidth of the type.

Note that this is not the same as a rotate-left; the RHS of a wrapping shift-left is restricted to the range of the type, rather than the bits shifted out of the LHS being returned to the other end. The primitive integer types all implement a rotate_left function, which may be what you want instead.

Examples

Basic usage:

fn main() { assert_eq!(1u8.wrapping_shl(7), 128); assert_eq!(1u8.wrapping_shl(8), 1); }
assert_eq!(1u8.wrapping_shl(7), 128);
assert_eq!(1u8.wrapping_shl(8), 1);

fn wrapping_shr(self, rhs: u32) -> u321.2.0

Panic-free bitwise shift-right; yields self >> mask(rhs), where mask removes any high-order bits of rhs that would cause the shift to exceed the bitwidth of the type.

Note that this is not the same as a rotate-right; the RHS of a wrapping shift-right is restricted to the range of the type, rather than the bits shifted out of the LHS being returned to the other end. The primitive integer types all implement a rotate_right function, which may be what you want instead.

Examples

Basic usage:

fn main() { assert_eq!(128u8.wrapping_shr(7), 1); assert_eq!(128u8.wrapping_shr(8), 128); }
assert_eq!(128u8.wrapping_shr(7), 1);
assert_eq!(128u8.wrapping_shr(8), 128);

fn overflowing_add(self, rhs: u32) -> (u32, bool)1.7.0

Calculates self + rhs

Returns a tuple of the addition along with a boolean indicating whether an arithmetic overflow would occur. If an overflow would have occurred then the wrapped value is returned.

Examples

Basic usage

fn main() { use std::u32; assert_eq!(5u32.overflowing_add(2), (7, false)); assert_eq!(u32::MAX.overflowing_add(1), (0, true)); }
use std::u32;

assert_eq!(5u32.overflowing_add(2), (7, false));
assert_eq!(u32::MAX.overflowing_add(1), (0, true));

fn overflowing_sub(self, rhs: u32) -> (u32, bool)1.7.0

Calculates self - rhs

Returns a tuple of the subtraction along with a boolean indicating whether an arithmetic overflow would occur. If an overflow would have occurred then the wrapped value is returned.

Examples

Basic usage

fn main() { use std::u32; assert_eq!(5u32.overflowing_sub(2), (3, false)); assert_eq!(0u32.overflowing_sub(1), (u32::MAX, true)); }
use std::u32;

assert_eq!(5u32.overflowing_sub(2), (3, false));
assert_eq!(0u32.overflowing_sub(1), (u32::MAX, true));

fn overflowing_mul(self, rhs: u32) -> (u32, bool)1.7.0

Calculates the multiplication of self and rhs.

Returns a tuple of the multiplication along with a boolean indicating whether an arithmetic overflow would occur. If an overflow would have occurred then the wrapped value is returned.

Examples

Basic usage

fn main() { assert_eq!(5u32.overflowing_mul(2), (10, false)); assert_eq!(1_000_000_000u32.overflowing_mul(10), (1410065408, true)); }
assert_eq!(5u32.overflowing_mul(2), (10, false));
assert_eq!(1_000_000_000u32.overflowing_mul(10), (1410065408, true));

fn overflowing_div(self, rhs: u32) -> (u32, bool)1.7.0

Calculates the divisor when self is divided by rhs.

Returns a tuple of the divisor along with a boolean indicating whether an arithmetic overflow would occur. Note that for unsigned integers overflow never occurs, so the second value is always false.

Panics

This function will panic if rhs is 0.

Examples

Basic usage

fn main() { assert_eq!(5u32.overflowing_div(2), (2, false)); }
assert_eq!(5u32.overflowing_div(2), (2, false));

fn overflowing_rem(self, rhs: u32) -> (u32, bool)1.7.0

Calculates the remainder when self is divided by rhs.

Returns a tuple of the remainder after dividing along with a boolean indicating whether an arithmetic overflow would occur. Note that for unsigned integers overflow never occurs, so the second value is always false.

Panics

This function will panic if rhs is 0.

Examples

Basic usage

fn main() { assert_eq!(5u32.overflowing_rem(2), (1, false)); }
assert_eq!(5u32.overflowing_rem(2), (1, false));

fn overflowing_neg(self) -> (u32, bool)1.7.0

Negates self in an overflowing fashion.

Returns !self + 1 using wrapping operations to return the value that represents the negation of this unsigned value. Note that for positive unsigned values overflow always occurs, but negating 0 does not overflow.

Examples

Basic usage

fn main() { assert_eq!(0u32.overflowing_neg(), (0, false)); assert_eq!(2u32.overflowing_neg(), (-2i32 as u32, true)); }
assert_eq!(0u32.overflowing_neg(), (0, false));
assert_eq!(2u32.overflowing_neg(), (-2i32 as u32, true));

fn overflowing_shl(self, rhs: u32) -> (u32, bool)1.7.0

Shifts self left by rhs bits.

Returns a tuple of the shifted version of self along with a boolean indicating whether the shift value was larger than or equal to the number of bits. If the shift value is too large, then value is masked (N-1) where N is the number of bits, and this value is then used to perform the shift.

Examples

Basic usage

fn main() { assert_eq!(0x10u32.overflowing_shl(4), (0x100, false)); assert_eq!(0x10u32.overflowing_shl(36), (0x100, true)); }
assert_eq!(0x10u32.overflowing_shl(4), (0x100, false));
assert_eq!(0x10u32.overflowing_shl(36), (0x100, true));

fn overflowing_shr(self, rhs: u32) -> (u32, bool)1.7.0

Shifts self right by rhs bits.

Returns a tuple of the shifted version of self along with a boolean indicating whether the shift value was larger than or equal to the number of bits. If the shift value is too large, then value is masked (N-1) where N is the number of bits, and this value is then used to perform the shift.

Examples

Basic usage

fn main() { assert_eq!(0x10u32.overflowing_shr(4), (0x1, false)); assert_eq!(0x10u32.overflowing_shr(36), (0x1, true)); }
assert_eq!(0x10u32.overflowing_shr(4), (0x1, false));
assert_eq!(0x10u32.overflowing_shr(36), (0x1, true));

fn pow(self, exp: u32) -> u321.0.0

Raises self to the power of exp, using exponentiation by squaring.

Examples

Basic usage:

fn main() { assert_eq!(2u32.pow(4), 16); }
assert_eq!(2u32.pow(4), 16);

fn is_power_of_two(self) -> bool1.0.0

Returns true if and only if self == 2^k for some k.

Examples

Basic usage:

fn main() { assert!(16u8.is_power_of_two()); assert!(!10u8.is_power_of_two()); }
assert!(16u8.is_power_of_two());
assert!(!10u8.is_power_of_two());

fn next_power_of_two(self) -> u321.0.0

Returns the smallest power of two greater than or equal to self. Unspecified behavior on overflow.

Examples

Basic usage:

fn main() { assert_eq!(2u8.next_power_of_two(), 2); assert_eq!(3u8.next_power_of_two(), 4); }
assert_eq!(2u8.next_power_of_two(), 2);
assert_eq!(3u8.next_power_of_two(), 4);

fn checked_next_power_of_two(self) -> Option<u32>1.0.0

Returns the smallest power of two greater than or equal to n. If the next power of two is greater than the type's maximum value, None is returned, otherwise the power of two is wrapped in Some.

Examples

Basic usage:

fn main() { assert_eq!(2u8.checked_next_power_of_two(), Some(2)); assert_eq!(3u8.checked_next_power_of_two(), Some(4)); assert_eq!(200u8.checked_next_power_of_two(), None); }
assert_eq!(2u8.checked_next_power_of_two(), Some(2));
assert_eq!(3u8.checked_next_power_of_two(), Some(4));
assert_eq!(200u8.checked_next_power_of_two(), None);

Trait Implementations

impl Display for u321.0.0

fn fmt(&self, f: &mut Formatter) -> Result<(), Error>

impl Debug for u321.0.0

fn fmt(&self, f: &mut Formatter) -> Result<(), Error>

impl UpperHex for u321.0.0

fn fmt(&self, f: &mut Formatter) -> Result<(), Error>

impl LowerHex for u321.0.0

fn fmt(&self, f: &mut Formatter) -> Result<(), Error>

impl Octal for u321.0.0

fn fmt(&self, f: &mut Formatter) -> Result<(), Error>

impl Binary for u321.0.0

fn fmt(&self, f: &mut Formatter) -> Result<(), Error>

impl Hash for u321.0.0

fn hash<H>(&self, state: &mut H) where H: Hasher

fn hash_slice<H>(data: &[u32], state: &mut H) where H: Hasher

impl Step for u32

fn step(&self, by: &u32) -> Option<u32>

Unstable (step_trait #27741)

: likely to be replaced by finer-grained traits

fn steps_between(start: &u32, end: &u32, by: &u32) -> Option<usize>

Unstable (step_trait #27741)

: likely to be replaced by finer-grained traits

impl Default for u321.0.0

fn default() -> u32

impl Clone for u321.0.0

fn clone(&self) -> u32

Returns a deep copy of the value.

fn clone_from(&mut self, source: &Self)1.0.0

impl Ord for u321.0.0

fn cmp(&self, other: &u32) -> Ordering

impl PartialOrd<u32> for u321.0.0

fn partial_cmp(&self, other: &u32) -> Option<Ordering>

fn lt(&self, other: &u32) -> bool

fn le(&self, other: &u32) -> bool

fn ge(&self, other: &u32) -> bool

fn gt(&self, other: &u32) -> bool

impl Eq for u321.0.0

impl PartialEq<u32> for u321.0.0

fn eq(&self, other: &u32) -> bool

fn ne(&self, other: &u32) -> bool

impl ShrAssign<isize> for u321.8.0

fn shr_assign(&mut self, other: isize)

impl ShrAssign<i64> for u321.8.0

fn shr_assign(&mut self, other: i64)

impl ShrAssign<i32> for u321.8.0

fn shr_assign(&mut self, other: i32)

impl ShrAssign<i16> for u321.8.0

fn shr_assign(&mut self, other: i16)

impl ShrAssign<i8> for u321.8.0

fn shr_assign(&mut self, other: i8)

impl ShrAssign<usize> for u321.8.0

fn shr_assign(&mut self, other: usize)

impl ShrAssign<u64> for u321.8.0

fn shr_assign(&mut self, other: u64)

impl ShrAssign<u32> for u321.8.0

fn shr_assign(&mut self, other: u32)

impl ShrAssign<u16> for u321.8.0

fn shr_assign(&mut self, other: u16)

impl ShrAssign<u8> for u321.8.0

fn shr_assign(&mut self, other: u8)

impl ShlAssign<isize> for u321.8.0

fn shl_assign(&mut self, other: isize)

impl ShlAssign<i64> for u321.8.0

fn shl_assign(&mut self, other: i64)

impl ShlAssign<i32> for u321.8.0

fn shl_assign(&mut self, other: i32)

impl ShlAssign<i16> for u321.8.0

fn shl_assign(&mut self, other: i16)

impl ShlAssign<i8> for u321.8.0

fn shl_assign(&mut self, other: i8)

impl ShlAssign<usize> for u321.8.0

fn shl_assign(&mut self, other: usize)

impl ShlAssign<u64> for u321.8.0

fn shl_assign(&mut self, other: u64)

impl ShlAssign<u32> for u321.8.0

fn shl_assign(&mut self, other: u32)

impl ShlAssign<u16> for u321.8.0

fn shl_assign(&mut self, other: u16)

impl ShlAssign<u8> for u321.8.0

fn shl_assign(&mut self, other: u8)

impl BitXorAssign<u32> for u321.8.0

fn bitxor_assign(&mut self, other: u32)

impl BitOrAssign<u32> for u321.8.0

fn bitor_assign(&mut self, other: u32)

impl BitAndAssign<u32> for u321.8.0

fn bitand_assign(&mut self, other: u32)

impl RemAssign<u32> for u321.8.0

fn rem_assign(&mut self, other: u32)

impl DivAssign<u32> for u321.8.0

fn div_assign(&mut self, other: u32)

impl MulAssign<u32> for u321.8.0

fn mul_assign(&mut self, other: u32)

impl SubAssign<u32> for u321.8.0

fn sub_assign(&mut self, other: u32)

impl AddAssign<u32> for u321.8.0

fn add_assign(&mut self, other: u32)

impl<'a, 'b> Shr<&'a isize> for &'b u321.0.0

type Output = u32::Output

fn shr(self, other: &'a isize) -> u32::Output

impl<'a> Shr<&'a isize> for u321.0.0

type Output = u32::Output

fn shr(self, other: &'a isize) -> u32::Output

impl<'a> Shr<isize> for &'a u321.0.0

type Output = u32::Output

fn shr(self, other: isize) -> u32::Output

impl Shr<isize> for u321.0.0

type Output = u32

fn shr(self, other: isize) -> u32

impl<'a, 'b> Shr<&'a i64> for &'b u321.0.0

type Output = u32::Output

fn shr(self, other: &'a i64) -> u32::Output

impl<'a> Shr<&'a i64> for u321.0.0

type Output = u32::Output

fn shr(self, other: &'a i64) -> u32::Output

impl<'a> Shr<i64> for &'a u321.0.0

type Output = u32::Output

fn shr(self, other: i64) -> u32::Output

impl Shr<i64> for u321.0.0

type Output = u32

fn shr(self, other: i64) -> u32

impl<'a, 'b> Shr<&'a i32> for &'b u321.0.0

type Output = u32::Output

fn shr(self, other: &'a i32) -> u32::Output

impl<'a> Shr<&'a i32> for u321.0.0

type Output = u32::Output

fn shr(self, other: &'a i32) -> u32::Output

impl<'a> Shr<i32> for &'a u321.0.0

type Output = u32::Output

fn shr(self, other: i32) -> u32::Output

impl Shr<i32> for u321.0.0

type Output = u32

fn shr(self, other: i32) -> u32

impl<'a, 'b> Shr<&'a i16> for &'b u321.0.0

type Output = u32::Output

fn shr(self, other: &'a i16) -> u32::Output

impl<'a> Shr<&'a i16> for u321.0.0

type Output = u32::Output

fn shr(self, other: &'a i16) -> u32::Output

impl<'a> Shr<i16> for &'a u321.0.0

type Output = u32::Output

fn shr(self, other: i16) -> u32::Output

impl Shr<i16> for u321.0.0

type Output = u32

fn shr(self, other: i16) -> u32

impl<'a, 'b> Shr<&'a i8> for &'b u321.0.0

type Output = u32::Output

fn shr(self, other: &'a i8) -> u32::Output

impl<'a> Shr<&'a i8> for u321.0.0

type Output = u32::Output

fn shr(self, other: &'a i8) -> u32::Output

impl<'a> Shr<i8> for &'a u321.0.0

type Output = u32::Output

fn shr(self, other: i8) -> u32::Output

impl Shr<i8> for u321.0.0

type Output = u32

fn shr(self, other: i8) -> u32

impl<'a, 'b> Shr<&'a usize> for &'b u321.0.0

type Output = u32::Output

fn shr(self, other: &'a usize) -> u32::Output

impl<'a> Shr<&'a usize> for u321.0.0

type Output = u32::Output

fn shr(self, other: &'a usize) -> u32::Output

impl<'a> Shr<usize> for &'a u321.0.0

type Output = u32::Output

fn shr(self, other: usize) -> u32::Output

impl Shr<usize> for u321.0.0

type Output = u32

fn shr(self, other: usize) -> u32

impl<'a, 'b> Shr<&'a u64> for &'b u321.0.0

type Output = u32::Output

fn shr(self, other: &'a u64) -> u32::Output

impl<'a> Shr<&'a u64> for u321.0.0

type Output = u32::Output

fn shr(self, other: &'a u64) -> u32::Output

impl<'a> Shr<u64> for &'a u321.0.0

type Output = u32::Output

fn shr(self, other: u64) -> u32::Output

impl Shr<u64> for u321.0.0

type Output = u32

fn shr(self, other: u64) -> u32

impl<'a, 'b> Shr<&'a u32> for &'b u321.0.0

type Output = u32::Output

fn shr(self, other: &'a u32) -> u32::Output

impl<'a> Shr<&'a u32> for u321.0.0

type Output = u32::Output

fn shr(self, other: &'a u32) -> u32::Output

impl<'a> Shr<u32> for &'a u321.0.0

type Output = u32::Output

fn shr(self, other: u32) -> u32::Output

impl Shr<u32> for u321.0.0

type Output = u32

fn shr(self, other: u32) -> u32

impl<'a, 'b> Shr<&'a u16> for &'b u321.0.0

type Output = u32::Output

fn shr(self, other: &'a u16) -> u32::Output

impl<'a> Shr<&'a u16> for u321.0.0

type Output = u32::Output

fn shr(self, other: &'a u16) -> u32::Output

impl<'a> Shr<u16> for &'a u321.0.0

type Output = u32::Output

fn shr(self, other: u16) -> u32::Output

impl Shr<u16> for u321.0.0

type Output = u32

fn shr(self, other: u16) -> u32

impl<'a, 'b> Shr<&'a u8> for &'b u321.0.0

type Output = u32::Output

fn shr(self, other: &'a u8) -> u32::Output

impl<'a> Shr<&'a u8> for u321.0.0

type Output = u32::Output

fn shr(self, other: &'a u8) -> u32::Output

impl<'a> Shr<u8> for &'a u321.0.0

type Output = u32::Output

fn shr(self, other: u8) -> u32::Output

impl Shr<u8> for u321.0.0

type Output = u32

fn shr(self, other: u8) -> u32

impl<'a, 'b> Shl<&'a isize> for &'b u321.0.0

type Output = u32::Output

fn shl(self, other: &'a isize) -> u32::Output

impl<'a> Shl<&'a isize> for u321.0.0

type Output = u32::Output

fn shl(self, other: &'a isize) -> u32::Output

impl<'a> Shl<isize> for &'a u321.0.0

type Output = u32::Output

fn shl(self, other: isize) -> u32::Output

impl Shl<isize> for u321.0.0

type Output = u32

fn shl(self, other: isize) -> u32

impl<'a, 'b> Shl<&'a i64> for &'b u321.0.0

type Output = u32::Output

fn shl(self, other: &'a i64) -> u32::Output

impl<'a> Shl<&'a i64> for u321.0.0

type Output = u32::Output

fn shl(self, other: &'a i64) -> u32::Output

impl<'a> Shl<i64> for &'a u321.0.0

type Output = u32::Output

fn shl(self, other: i64) -> u32::Output

impl Shl<i64> for u321.0.0

type Output = u32

fn shl(self, other: i64) -> u32

impl<'a, 'b> Shl<&'a i32> for &'b u321.0.0

type Output = u32::Output

fn shl(self, other: &'a i32) -> u32::Output

impl<'a> Shl<&'a i32> for u321.0.0

type Output = u32::Output

fn shl(self, other: &'a i32) -> u32::Output

impl<'a> Shl<i32> for &'a u321.0.0

type Output = u32::Output

fn shl(self, other: i32) -> u32::Output

impl Shl<i32> for u321.0.0

type Output = u32

fn shl(self, other: i32) -> u32

impl<'a, 'b> Shl<&'a i16> for &'b u321.0.0

type Output = u32::Output

fn shl(self, other: &'a i16) -> u32::Output

impl<'a> Shl<&'a i16> for u321.0.0

type Output = u32::Output

fn shl(self, other: &'a i16) -> u32::Output

impl<'a> Shl<i16> for &'a u321.0.0

type Output = u32::Output

fn shl(self, other: i16) -> u32::Output

impl Shl<i16> for u321.0.0

type Output = u32

fn shl(self, other: i16) -> u32

impl<'a, 'b> Shl<&'a i8> for &'b u321.0.0

type Output = u32::Output

fn shl(self, other: &'a i8) -> u32::Output

impl<'a> Shl<&'a i8> for u321.0.0

type Output = u32::Output

fn shl(self, other: &'a i8) -> u32::Output

impl<'a> Shl<i8> for &'a u321.0.0

type Output = u32::Output

fn shl(self, other: i8) -> u32::Output

impl Shl<i8> for u321.0.0

type Output = u32

fn shl(self, other: i8) -> u32

impl<'a, 'b> Shl<&'a usize> for &'b u321.0.0

type Output = u32::Output

fn shl(self, other: &'a usize) -> u32::Output

impl<'a> Shl<&'a usize> for u321.0.0

type Output = u32::Output

fn shl(self, other: &'a usize) -> u32::Output

impl<'a> Shl<usize> for &'a u321.0.0

type Output = u32::Output

fn shl(self, other: usize) -> u32::Output

impl Shl<usize> for u321.0.0

type Output = u32

fn shl(self, other: usize) -> u32

impl<'a, 'b> Shl<&'a u64> for &'b u321.0.0

type Output = u32::Output

fn shl(self, other: &'a u64) -> u32::Output

impl<'a> Shl<&'a u64> for u321.0.0

type Output = u32::Output

fn shl(self, other: &'a u64) -> u32::Output

impl<'a> Shl<u64> for &'a u321.0.0

type Output = u32::Output

fn shl(self, other: u64) -> u32::Output

impl Shl<u64> for u321.0.0

type Output = u32

fn shl(self, other: u64) -> u32

impl<'a, 'b> Shl<&'a u32> for &'b u321.0.0

type Output = u32::Output

fn shl(self, other: &'a u32) -> u32::Output

impl<'a> Shl<&'a u32> for u321.0.0

type Output = u32::Output

fn shl(self, other: &'a u32) -> u32::Output

impl<'a> Shl<u32> for &'a u321.0.0

type Output = u32::Output

fn shl(self, other: u32) -> u32::Output

impl Shl<u32> for u321.0.0

type Output = u32

fn shl(self, other: u32) -> u32

impl<'a, 'b> Shl<&'a u16> for &'b u321.0.0

type Output = u32::Output

fn shl(self, other: &'a u16) -> u32::Output

impl<'a> Shl<&'a u16> for u321.0.0

type Output = u32::Output

fn shl(self, other: &'a u16) -> u32::Output

impl<'a> Shl<u16> for &'a u321.0.0

type Output = u32::Output

fn shl(self, other: u16) -> u32::Output

impl Shl<u16> for u321.0.0

type Output = u32

fn shl(self, other: u16) -> u32

impl<'a, 'b> Shl<&'a u8> for &'b u321.0.0

type Output = u32::Output

fn shl(self, other: &'a u8) -> u32::Output

impl<'a> Shl<&'a u8> for u321.0.0

type Output = u32::Output

fn shl(self, other: &'a u8) -> u32::Output

impl<'a> Shl<u8> for &'a u321.0.0

type Output = u32::Output

fn shl(self, other: u8) -> u32::Output

impl Shl<u8> for u321.0.0

type Output = u32

fn shl(self, other: u8) -> u32

impl<'a, 'b> BitXor<&'a u32> for &'b u321.0.0

type Output = u32::Output

fn bitxor(self, other: &'a u32) -> u32::Output

impl<'a> BitXor<&'a u32> for u321.0.0

type Output = u32::Output

fn bitxor(self, other: &'a u32) -> u32::Output

impl<'a> BitXor<u32> for &'a u321.0.0

type Output = u32::Output

fn bitxor(self, other: u32) -> u32::Output

impl BitXor<u32> for u321.0.0

type Output = u32

fn bitxor(self, other: u32) -> u32

impl<'a, 'b> BitOr<&'a u32> for &'b u321.0.0

type Output = u32::Output

fn bitor(self, other: &'a u32) -> u32::Output

impl<'a> BitOr<&'a u32> for u321.0.0

type Output = u32::Output

fn bitor(self, other: &'a u32) -> u32::Output

impl<'a> BitOr<u32> for &'a u321.0.0

type Output = u32::Output

fn bitor(self, other: u32) -> u32::Output

impl BitOr<u32> for u321.0.0

type Output = u32

fn bitor(self, rhs: u32) -> u32

impl<'a, 'b> BitAnd<&'a u32> for &'b u321.0.0

type Output = u32::Output

fn bitand(self, other: &'a u32) -> u32::Output

impl<'a> BitAnd<&'a u32> for u321.0.0

type Output = u32::Output

fn bitand(self, other: &'a u32) -> u32::Output

impl<'a> BitAnd<u32> for &'a u321.0.0

type Output = u32::Output

fn bitand(self, other: u32) -> u32::Output

impl BitAnd<u32> for u321.0.0

type Output = u32

fn bitand(self, rhs: u32) -> u32

impl<'a> Not for &'a u321.0.0

type Output = u32::Output

fn not(self) -> u32::Output

impl Not for u321.0.0

type Output = u32

fn not(self) -> u32

impl<'a, 'b> Rem<&'a u32> for &'b u321.0.0

type Output = u32::Output

fn rem(self, other: &'a u32) -> u32::Output

impl<'a> Rem<&'a u32> for u321.0.0

type Output = u32::Output

fn rem(self, other: &'a u32) -> u32::Output

impl<'a> Rem<u32> for &'a u321.0.0

type Output = u32::Output

fn rem(self, other: u32) -> u32::Output

impl Rem<u32> for u321.0.0

This operation satisfies n % d == n - (n / d) * d. The result has the same sign as the left operand.

type Output = u32

fn rem(self, other: u32) -> u32

impl<'a, 'b> Div<&'a u32> for &'b u321.0.0

type Output = u32::Output

fn div(self, other: &'a u32) -> u32::Output

impl<'a> Div<&'a u32> for u321.0.0

type Output = u32::Output

fn div(self, other: &'a u32) -> u32::Output

impl<'a> Div<u32> for &'a u321.0.0

type Output = u32::Output

fn div(self, other: u32) -> u32::Output

impl Div<u32> for u321.0.0

This operation rounds towards zero, truncating any fractional part of the exact result.

type Output = u32

fn div(self, other: u32) -> u32

impl<'a, 'b> Mul<&'a u32> for &'b u321.0.0

type Output = u32::Output

fn mul(self, other: &'a u32) -> u32::Output

impl<'a> Mul<&'a u32> for u321.0.0

type Output = u32::Output

fn mul(self, other: &'a u32) -> u32::Output

impl<'a> Mul<u32> for &'a u321.0.0

type Output = u32::Output

fn mul(self, other: u32) -> u32::Output

impl Mul<u32> for u321.0.0

type Output = u32

fn mul(self, other: u32) -> u32

impl<'a, 'b> Sub<&'a u32> for &'b u321.0.0

type Output = u32::Output

fn sub(self, other: &'a u32) -> u32::Output

impl<'a> Sub<&'a u32> for u321.0.0

type Output = u32::Output

fn sub(self, other: &'a u32) -> u32::Output

impl<'a> Sub<u32> for &'a u321.0.0

type Output = u32::Output

fn sub(self, other: u32) -> u32::Output

impl Sub<u32> for u321.0.0

type Output = u32

fn sub(self, other: u32) -> u32

impl<'a, 'b> Add<&'a u32> for &'b u321.0.0

type Output = u32::Output

fn add(self, other: &'a u32) -> u32::Output

impl<'a> Add<&'a u32> for u321.0.0

type Output = u32::Output

fn add(self, other: &'a u32) -> u32::Output

impl<'a> Add<u32> for &'a u321.0.0

type Output = u32::Output

fn add(self, other: u32) -> u32::Output

impl Add<u32> for u321.0.0

type Output = u32

fn add(self, other: u32) -> u32

impl Zeroable for u32

impl From<u16> for u321.5.0

fn from(small: u16) -> u32

impl From<u8> for u321.5.0

fn from(small: u8) -> u32

impl FromStr for u321.0.0

type Err = ParseIntError

fn from_str(src: &str) -> Result<u32, ParseIntError>

impl One for u32

fn one() -> u32

Unstable (zero_one #27739)

: unsure of placement, wants to use associated constants

impl Zero for u32

fn zero() -> u32

Unstable (zero_one #27739)

: unsure of placement, wants to use associated constants

impl From<Ipv4Addr> for u321.1.0

fn from(ip: Ipv4Addr) -> u32