Primitive Type slice []

A dynamically-sized view into a contiguous sequence, [T].

Slices are a view into a block of memory represented as a pointer and a length.

fn main() { // slicing a Vec let vec = vec![1, 2, 3]; let int_slice = &vec[..]; // coercing an array to a slice let str_slice: &[&str] = &["one", "two", "three"]; }
// slicing a Vec
let vec = vec![1, 2, 3];
let int_slice = &vec[..];
// coercing an array to a slice
let str_slice: &[&str] = &["one", "two", "three"];

Slices are either mutable or shared. The shared slice type is &[T], while the mutable slice type is &mut [T], where T represents the element type. For example, you can mutate the block of memory that a mutable slice points to:

fn main() { let x = &mut [1, 2, 3]; x[1] = 7; assert_eq!(x, &[1, 7, 3]); }
let x = &mut [1, 2, 3];
x[1] = 7;
assert_eq!(x, &[1, 7, 3]);

See also the std::slice module.

Methods

impl<T> [T]

Allocating extension methods for slices.

fn len(&self) -> usize1.0.0

Returns the number of elements in the slice.

Example

fn main() { let a = [1, 2, 3]; assert_eq!(a.len(), 3); }
let a = [1, 2, 3];
assert_eq!(a.len(), 3);

fn is_empty(&self) -> bool1.0.0

Returns true if the slice has a length of 0

Example

fn main() { let a = [1, 2, 3]; assert!(!a.is_empty()); }
let a = [1, 2, 3];
assert!(!a.is_empty());

fn first(&self) -> Option<&T>1.0.0

Returns the first element of a slice, or None if it is empty.

Examples

fn main() { let v = [10, 40, 30]; assert_eq!(Some(&10), v.first()); let w: &[i32] = &[]; assert_eq!(None, w.first()); }
let v = [10, 40, 30];
assert_eq!(Some(&10), v.first());

let w: &[i32] = &[];
assert_eq!(None, w.first());

fn first_mut(&mut self) -> Option<&mut T>1.0.0

Returns a mutable pointer to the first element of a slice, or None if it is empty

fn split_first(&self) -> Option<(&T, &[T])>1.5.0

Returns the first and all the rest of the elements of a slice.

fn split_first_mut(&mut self) -> Option<(&mut T, &mut [T])>1.5.0

Returns the first and all the rest of the elements of a slice.

fn split_last(&self) -> Option<(&T, &[T])>1.5.0

Returns the last and all the rest of the elements of a slice.

fn split_last_mut(&mut self) -> Option<(&mut T, &mut [T])>1.5.0

Returns the last and all the rest of the elements of a slice.

fn last(&self) -> Option<&T>1.0.0

Returns the last element of a slice, or None if it is empty.

Examples

fn main() { let v = [10, 40, 30]; assert_eq!(Some(&30), v.last()); let w: &[i32] = &[]; assert_eq!(None, w.last()); }
let v = [10, 40, 30];
assert_eq!(Some(&30), v.last());

let w: &[i32] = &[];
assert_eq!(None, w.last());

fn last_mut(&mut self) -> Option<&mut T>1.0.0

Returns a mutable pointer to the last item in the slice.

fn get(&self, index: usize) -> Option<&T>1.0.0

Returns the element of a slice at the given index, or None if the index is out of bounds.

Examples

fn main() { let v = [10, 40, 30]; assert_eq!(Some(&40), v.get(1)); assert_eq!(None, v.get(3)); }
let v = [10, 40, 30];
assert_eq!(Some(&40), v.get(1));
assert_eq!(None, v.get(3));

fn get_mut(&mut self, index: usize) -> Option<&mut T>1.0.0

Returns a mutable reference to the element at the given index, or None if the index is out of bounds

unsafe fn get_unchecked(&self, index: usize) -> &T1.0.0

Returns a pointer to the element at the given index, without doing bounds checking.

unsafe fn get_unchecked_mut(&mut self, index: usize) -> &mut T1.0.0

Returns an unsafe mutable pointer to the element in index

fn as_ptr(&self) -> *const T1.0.0

Returns an raw pointer to the slice's buffer

The caller must ensure that the slice outlives the pointer this function returns, or else it will end up pointing to garbage.

Modifying the slice may cause its buffer to be reallocated, which would also make any pointers to it invalid.

fn as_mut_ptr(&mut self) -> *mut T1.0.0

Returns an unsafe mutable pointer to the slice's buffer.

The caller must ensure that the slice outlives the pointer this function returns, or else it will end up pointing to garbage.

Modifying the slice may cause its buffer to be reallocated, which would also make any pointers to it invalid.

fn swap(&mut self, a: usize, b: usize)1.0.0

Swaps two elements in a slice.

Arguments

  • a - The index of the first element
  • b - The index of the second element

Panics

Panics if a or b are out of bounds.

Example

fn main() { let mut v = ["a", "b", "c", "d"]; v.swap(1, 3); assert!(v == ["a", "d", "c", "b"]); }
let mut v = ["a", "b", "c", "d"];
v.swap(1, 3);
assert!(v == ["a", "d", "c", "b"]);

fn reverse(&mut self)1.0.0

Reverse the order of elements in a slice, in place.

Example

fn main() { let mut v = [1, 2, 3]; v.reverse(); assert!(v == [3, 2, 1]); }
let mut v = [1, 2, 3];
v.reverse();
assert!(v == [3, 2, 1]);

fn iter(&self) -> Iter<T>1.0.0

Returns an iterator over the slice.

fn iter_mut(&mut self) -> IterMut<T>1.0.0

Returns an iterator that allows modifying each value

fn windows(&self, size: usize) -> Windows<T>1.0.0

Returns an iterator over all contiguous windows of length size. The windows overlap. If the slice is shorter than size, the iterator returns no values.

Panics

Panics if size is 0.

Example

Print the adjacent pairs of a slice (i.e. [1,2], [2,3], [3,4]):

fn main() { let v = &[1, 2, 3, 4]; for win in v.windows(2) { println!("{:?}", win); } }
let v = &[1, 2, 3, 4];
for win in v.windows(2) {
    println!("{:?}", win);
}

fn chunks(&self, size: usize) -> Chunks<T>1.0.0

Returns an iterator over size elements of the slice at a time. The chunks are slices and do not overlap. If size does not divide the length of the slice, then the last chunk will not have length size.

Panics

Panics if size is 0.

Example

Print the slice two elements at a time (i.e. [1,2], [3,4], [5]):

fn main() { let v = &[1, 2, 3, 4, 5]; for win in v.chunks(2) { println!("{:?}", win); } }
let v = &[1, 2, 3, 4, 5];
for win in v.chunks(2) {
    println!("{:?}", win);
}

fn chunks_mut(&mut self, chunk_size: usize) -> ChunksMut<T>1.0.0

Returns an iterator over chunk_size elements of the slice at a time. The chunks are mutable slices, and do not overlap. If chunk_size does not divide the length of the slice, then the last chunk will not have length chunk_size.

Panics

Panics if chunk_size is 0.

fn split_at(&self, mid: usize) -> (&[T], &[T])1.0.0

Divides one slice into two at an index.

The first will contain all indices from [0, mid) (excluding the index mid itself) and the second will contain all indices from [mid, len) (excluding the index len itself).

Panics

Panics if mid > len.

Examples

fn main() { let v = [10, 40, 30, 20, 50]; let (v1, v2) = v.split_at(2); assert_eq!([10, 40], v1); assert_eq!([30, 20, 50], v2); }
let v = [10, 40, 30, 20, 50];
let (v1, v2) = v.split_at(2);
assert_eq!([10, 40], v1);
assert_eq!([30, 20, 50], v2);

fn split_at_mut(&mut self, mid: usize) -> (&mut [T], &mut [T])1.0.0

Divides one &mut into two at an index.

The first will contain all indices from [0, mid) (excluding the index mid itself) and the second will contain all indices from [mid, len) (excluding the index len itself).

Panics

Panics if mid > len.

Example

fn main() { let mut v = [1, 2, 3, 4, 5, 6]; // scoped to restrict the lifetime of the borrows { let (left, right) = v.split_at_mut(0); assert!(left == []); assert!(right == [1, 2, 3, 4, 5, 6]); } { let (left, right) = v.split_at_mut(2); assert!(left == [1, 2]); assert!(right == [3, 4, 5, 6]); } { let (left, right) = v.split_at_mut(6); assert!(left == [1, 2, 3, 4, 5, 6]); assert!(right == []); } }
let mut v = [1, 2, 3, 4, 5, 6];

// scoped to restrict the lifetime of the borrows
{
   let (left, right) = v.split_at_mut(0);
   assert!(left == []);
   assert!(right == [1, 2, 3, 4, 5, 6]);
}

{
    let (left, right) = v.split_at_mut(2);
    assert!(left == [1, 2]);
    assert!(right == [3, 4, 5, 6]);
}

{
    let (left, right) = v.split_at_mut(6);
    assert!(left == [1, 2, 3, 4, 5, 6]);
    assert!(right == []);
}

fn split<F>(&self, pred: F) -> Split<T, F> where F: FnMut(&T) -> bool1.0.0

Returns an iterator over subslices separated by elements that match pred. The matched element is not contained in the subslices.

Examples

Print the slice split by numbers divisible by 3 (i.e. [10, 40], [20], [50]):

fn main() { let v = [10, 40, 30, 20, 60, 50]; for group in v.split(|num| *num % 3 == 0) { println!("{:?}", group); } }
let v = [10, 40, 30, 20, 60, 50];
for group in v.split(|num| *num % 3 == 0) {
    println!("{:?}", group);
}

fn split_mut<F>(&mut self, pred: F) -> SplitMut<T, F> where F: FnMut(&T) -> bool1.0.0

Returns an iterator over mutable subslices separated by elements that match pred. The matched element is not contained in the subslices.

fn splitn<F>(&self, n: usize, pred: F) -> SplitN<T, F> where F: FnMut(&T) -> bool1.0.0

Returns an iterator over subslices separated by elements that match pred, limited to returning at most n items. The matched element is not contained in the subslices.

The last element returned, if any, will contain the remainder of the slice.

Examples

Print the slice split once by numbers divisible by 3 (i.e. [10, 40], [20, 60, 50]):

fn main() { let v = [10, 40, 30, 20, 60, 50]; for group in v.splitn(2, |num| *num % 3 == 0) { println!("{:?}", group); } }
let v = [10, 40, 30, 20, 60, 50];
for group in v.splitn(2, |num| *num % 3 == 0) {
    println!("{:?}", group);
}

fn splitn_mut<F>(&mut self, n: usize, pred: F) -> SplitNMut<T, F> where F: FnMut(&T) -> bool1.0.0

Returns an iterator over subslices separated by elements that match pred, limited to returning at most n items. The matched element is not contained in the subslices.

The last element returned, if any, will contain the remainder of the slice.

fn rsplitn<F>(&self, n: usize, pred: F) -> RSplitN<T, F> where F: FnMut(&T) -> bool1.0.0

Returns an iterator over subslices separated by elements that match pred limited to returning at most n items. This starts at the end of the slice and works backwards. The matched element is not contained in the subslices.

The last element returned, if any, will contain the remainder of the slice.

Examples

Print the slice split once, starting from the end, by numbers divisible by 3 (i.e. [50], [10, 40, 30, 20]):

fn main() { let v = [10, 40, 30, 20, 60, 50]; for group in v.rsplitn(2, |num| *num % 3 == 0) { println!("{:?}", group); } }
let v = [10, 40, 30, 20, 60, 50];
for group in v.rsplitn(2, |num| *num % 3 == 0) {
    println!("{:?}", group);
}

fn rsplitn_mut<F>(&mut self, n: usize, pred: F) -> RSplitNMut<T, F> where F: FnMut(&T) -> bool1.0.0

Returns an iterator over subslices separated by elements that match pred limited to returning at most n items. This starts at the end of the slice and works backwards. The matched element is not contained in the subslices.

The last element returned, if any, will contain the remainder of the slice.

fn contains(&self, x: &T) -> bool where T: PartialEq<T>1.0.0

Returns true if the slice contains an element with the given value.

Examples

fn main() { let v = [10, 40, 30]; assert!(v.contains(&30)); assert!(!v.contains(&50)); }
let v = [10, 40, 30];
assert!(v.contains(&30));
assert!(!v.contains(&50));

fn starts_with(&self, needle: &[T]) -> bool where T: PartialEq<T>1.0.0

Returns true if needle is a prefix of the slice.

Examples

fn main() { let v = [10, 40, 30]; assert!(v.starts_with(&[10])); assert!(v.starts_with(&[10, 40])); assert!(!v.starts_with(&[50])); assert!(!v.starts_with(&[10, 50])); }
let v = [10, 40, 30];
assert!(v.starts_with(&[10]));
assert!(v.starts_with(&[10, 40]));
assert!(!v.starts_with(&[50]));
assert!(!v.starts_with(&[10, 50]));

fn ends_with(&self, needle: &[T]) -> bool where T: PartialEq<T>1.0.0

Returns true if needle is a suffix of the slice.

Examples

fn main() { let v = [10, 40, 30]; assert!(v.ends_with(&[30])); assert!(v.ends_with(&[40, 30])); assert!(!v.ends_with(&[50])); assert!(!v.ends_with(&[50, 30])); }
let v = [10, 40, 30];
assert!(v.ends_with(&[30]));
assert!(v.ends_with(&[40, 30]));
assert!(!v.ends_with(&[50]));
assert!(!v.ends_with(&[50, 30]));

Binary search a sorted slice for a given element.

If the value is found then Ok is returned, containing the index of the matching element; if the value is not found then Err is returned, containing the index where a matching element could be inserted while maintaining sorted order.

Example

Looks up a series of four elements. The first is found, with a uniquely determined position; the second and third are not found; the fourth could match any position in [1,4].

fn main() { let s = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55]; assert_eq!(s.binary_search(&13), Ok(9)); assert_eq!(s.binary_search(&4), Err(7)); assert_eq!(s.binary_search(&100), Err(13)); let r = s.binary_search(&1); assert!(match r { Ok(1...4) => true, _ => false, }); }
let s = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55];

assert_eq!(s.binary_search(&13),  Ok(9));
assert_eq!(s.binary_search(&4),   Err(7));
assert_eq!(s.binary_search(&100), Err(13));
let r = s.binary_search(&1);
assert!(match r { Ok(1...4) => true, _ => false, });

fn binary_search_by<F>(&self, f: F) -> Result<usize, usize> where F: FnMut(&T) -> Ordering1.0.0

Binary search a sorted slice with a comparator function.

The comparator function should implement an order consistent with the sort order of the underlying slice, returning an order code that indicates whether its argument is Less, Equal or Greater the desired target.

If a matching value is found then returns Ok, containing the index for the matched element; if no match is found then Err is returned, containing the index where a matching element could be inserted while maintaining sorted order.

Example

Looks up a series of four elements. The first is found, with a uniquely determined position; the second and third are not found; the fourth could match any position in [1,4].

fn main() { let s = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55]; let seek = 13; assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Ok(9)); let seek = 4; assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Err(7)); let seek = 100; assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Err(13)); let seek = 1; let r = s.binary_search_by(|probe| probe.cmp(&seek)); assert!(match r { Ok(1...4) => true, _ => false, }); }
let s = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55];

let seek = 13;
assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Ok(9));
let seek = 4;
assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Err(7));
let seek = 100;
assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Err(13));
let seek = 1;
let r = s.binary_search_by(|probe| probe.cmp(&seek));
assert!(match r { Ok(1...4) => true, _ => false, });

fn binary_search_by_key<B, F>(&self, b: &B, f: F) -> Result<usize, usize> where F: FnMut(&T) -> B, B: Ord

Unstable (slice_binary_search_by_key #33018)

: recently added

Binary search a sorted slice with a key extraction function.

Assumes that the slice is sorted by the key, for instance with sort_by_key using the same key extraction function.

If a matching value is found then returns Ok, containing the index for the matched element; if no match is found then Err is returned, containing the index where a matching element could be inserted while maintaining sorted order.

Examples

Looks up a series of four elements in a slice of pairs sorted by their second elements. The first is found, with a uniquely determined position; the second and third are not found; the fourth could match any position in [1,4].

#![feature(slice_binary_search_by_key)] fn main() { let s = [(0, 0), (2, 1), (4, 1), (5, 1), (3, 1), (1, 2), (2, 3), (4, 5), (5, 8), (3, 13), (1, 21), (2, 34), (4, 55)]; assert_eq!(s.binary_search_by_key(&13, |&(a,b)| b), Ok(9)); assert_eq!(s.binary_search_by_key(&4, |&(a,b)| b), Err(7)); assert_eq!(s.binary_search_by_key(&100, |&(a,b)| b), Err(13)); let r = s.binary_search_by_key(&1, |&(a,b)| b); assert!(match r { Ok(1...4) => true, _ => false, }); }
#![feature(slice_binary_search_by_key)]
let s = [(0, 0), (2, 1), (4, 1), (5, 1), (3, 1),
         (1, 2), (2, 3), (4, 5), (5, 8), (3, 13),
         (1, 21), (2, 34), (4, 55)];

assert_eq!(s.binary_search_by_key(&13, |&(a,b)| b),  Ok(9));
assert_eq!(s.binary_search_by_key(&4, |&(a,b)| b),   Err(7));
assert_eq!(s.binary_search_by_key(&100, |&(a,b)| b), Err(13));
let r = s.binary_search_by_key(&1, |&(a,b)| b);
assert!(match r { Ok(1...4) => true, _ => false, });

fn sort(&mut self) where T: Ord1.0.0

Sorts the slice, in place.

This is equivalent to self.sort_by(|a, b| a.cmp(b)).

This is a stable sort.

Examples

fn main() { let mut v = [-5, 4, 1, -3, 2]; v.sort(); assert!(v == [-5, -3, 1, 2, 4]); }
let mut v = [-5, 4, 1, -3, 2];

v.sort();
assert!(v == [-5, -3, 1, 2, 4]);

fn sort_by_key<B, F>(&mut self, f: F) where B: Ord, F: FnMut(&T) -> B1.7.0

Sorts the slice, in place, using key to extract a key by which to order the sort by.

This sort is O(n log n) worst-case and stable, but allocates approximately 2 * n, where n is the length of self.

This is a stable sort.

Examples

fn main() { let mut v = [-5i32, 4, 1, -3, 2]; v.sort_by_key(|k| k.abs()); assert!(v == [1, 2, -3, 4, -5]); }
let mut v = [-5i32, 4, 1, -3, 2];

v.sort_by_key(|k| k.abs());
assert!(v == [1, 2, -3, 4, -5]);

fn sort_by<F>(&mut self, compare: F) where F: FnMut(&T, &T) -> Ordering1.0.0

Sorts the slice, in place, using compare to compare elements.

This sort is O(n log n) worst-case and stable, but allocates approximately 2 * n, where n is the length of self.

Examples

fn main() { let mut v = [5, 4, 1, 3, 2]; v.sort_by(|a, b| a.cmp(b)); assert!(v == [1, 2, 3, 4, 5]); // reverse sorting v.sort_by(|a, b| b.cmp(a)); assert!(v == [5, 4, 3, 2, 1]); }
let mut v = [5, 4, 1, 3, 2];
v.sort_by(|a, b| a.cmp(b));
assert!(v == [1, 2, 3, 4, 5]);

// reverse sorting
v.sort_by(|a, b| b.cmp(a));
assert!(v == [5, 4, 3, 2, 1]);

fn clone_from_slice(&mut self, src: &[T]) where T: Clone1.7.0

Copies the elements from src into self.

The length of this slice must be the same as the slice passed in.

Panics

This function will panic if the two slices have different lengths.

Example

fn main() { let mut dst = [0, 0, 0]; let src = [1, 2, 3]; dst.clone_from_slice(&src); assert!(dst == [1, 2, 3]); }
let mut dst = [0, 0, 0];
let src = [1, 2, 3];

dst.clone_from_slice(&src);
assert!(dst == [1, 2, 3]);

fn copy_from_slice(&mut self, src: &[T]) where T: Copy1.9.0

Copies all elements from src into self, using a memcpy.

The length of src must be the same as self.

Panics

This function will panic if the two slices have different lengths.

Example

fn main() { let mut dst = [0, 0, 0]; let src = [1, 2, 3]; dst.copy_from_slice(&src); assert_eq!(src, dst); }
let mut dst = [0, 0, 0];
let src = [1, 2, 3];

dst.copy_from_slice(&src);
assert_eq!(src, dst);

fn to_vec(&self) -> Vec<T> where T: Clone1.0.0

Copies self into a new Vec.

fn into_vec(self: Box<[T]>) -> Vec<T>1.0.0

Converts self into a vector without clones or allocation.

Trait Implementations

impl<T> Debug for [T] where T: Debug1.0.0

fn fmt(&self, f: &mut Formatter) -> Result<(), Error>

impl<T> Hash for [T] where T: Hash1.0.0

fn hash<H>(&self, state: &mut H) where H: Hasher

fn hash_slice<H>(data: &[Self], state: &mut H) where H: Hasher1.3.0

impl<'a, 'b> Pattern<'a> for &'b [char]

Searches for chars that are equal to any of the chars in the array

type Searcher = CharSliceSearcher<'a, 'b>

Unstable (pattern #27721)

: API not fully fleshed out and ready to be stabilized

fn into_searcher(self, haystack: &'a str) -> CharSliceSearcher<'a, 'b>

Unstable (pattern #27721)

: API not fully fleshed out and ready to be stabilized

fn is_contained_in(self, haystack: &'a str) -> bool

Unstable (pattern #27721)

: API not fully fleshed out and ready to be stabilized

fn is_prefix_of(self, haystack: &'a str) -> bool

Unstable (pattern #27721)

: API not fully fleshed out and ready to be stabilized

fn is_suffix_of(self, haystack: &'a str) -> bool where CharSliceSearcher<'a, 'b>: ReverseSearcher<'a>

Unstable (pattern #27721)

: API not fully fleshed out and ready to be stabilized

impl<T> PartialOrd<[T]> for [T] where T: PartialOrd<T>1.0.0

fn partial_cmp(&self, other: &[T]) -> Option<Ordering>

fn lt(&self, other: &Rhs) -> bool1.0.0

fn le(&self, other: &Rhs) -> bool1.0.0

fn gt(&self, other: &Rhs) -> bool1.0.0

fn ge(&self, other: &Rhs) -> bool1.0.0

impl<T> Ord for [T] where T: Ord1.0.0

fn cmp(&self, other: &[T]) -> Ordering

impl<T> Eq for [T] where T: Eq1.0.0

impl<A, B> PartialEq<[B]> for [A] where A: PartialEq<B>1.0.0

fn eq(&self, other: &[B]) -> bool

fn ne(&self, other: &[B]) -> bool

impl<'a, T> IntoIterator for &'a mut [T]1.0.0

type Item = &'a mut T

type IntoIter = IterMut<'a, T>

fn into_iter(self) -> IterMut<'a, T>

impl<'a, T> IntoIterator for &'a [T]1.0.0

type Item = &'a T

type IntoIter = Iter<'a, T>

fn into_iter(self) -> Iter<'a, T>

impl<'a, T> Default for &'a mut [T]1.5.0

fn default() -> &'a mut [T]

impl<'a, T> Default for &'a [T]1.0.0

fn default() -> &'a [T]

impl<T> IndexMut<RangeToInclusive<usize>> for [T]

fn index_mut(&mut self, index: RangeToInclusive<usize>) -> &mut [T]

Unstable (inclusive_range #28237)

: recently added, follows RFC

impl<T> IndexMut<RangeInclusive<usize>> for [T]

fn index_mut(&mut self, index: RangeInclusive<usize>) -> &mut [T]

Unstable (inclusive_range #28237)

: recently added, follows RFC

impl<T> IndexMut<RangeFull> for [T]1.0.0

Implements mutable slicing with syntax &mut self[..].

Returns a slice of the whole slice. This operation can not panic.

Equivalent to &mut self[0 .. self.len()]

fn index_mut(&mut self, _index: RangeFull) -> &mut [T]

impl<T> IndexMut<RangeFrom<usize>> for [T]1.0.0

Implements mutable slicing with syntax &mut self[begin ..].

Returns a slice of self from and including the index begin until the end.

Equivalent to &mut self[begin .. self.len()]

fn index_mut(&mut self, index: RangeFrom<usize>) -> &mut [T]

impl<T> IndexMut<RangeTo<usize>> for [T]1.0.0

Implements mutable slicing with syntax &mut self[.. end].

Returns a slice of self from the beginning until but not including the index end.

Equivalent to &mut self[0 .. end]

fn index_mut(&mut self, index: RangeTo<usize>) -> &mut [T]

impl<T> IndexMut<Range<usize>> for [T]1.0.0

Implements mutable slicing with syntax &mut self[begin .. end].

Returns a slice of self for the index range [begin..end).

This operation is O(1).

Panics

Requires that begin <= end and end <= self.len(), otherwise slicing will panic.

fn index_mut(&mut self, index: Range<usize>) -> &mut [T]

impl<T> Index<RangeToInclusive<usize>> for [T]

type Output = [T]

Unstable (inclusive_range #28237)

: recently added, follows RFC

fn index(&self, index: RangeToInclusive<usize>) -> &[T]

Unstable (inclusive_range #28237)

: recently added, follows RFC

impl<T> Index<RangeInclusive<usize>> for [T]

type Output = [T]

Unstable (inclusive_range #28237)

: recently added, follows RFC

fn index(&self, index: RangeInclusive<usize>) -> &[T]

Unstable (inclusive_range #28237)

: recently added, follows RFC

impl<T> Index<RangeFull> for [T]1.0.0

Implements slicing with syntax &self[..].

Returns a slice of the whole slice. This operation can not panic.

Equivalent to &self[0 .. self.len()]

type Output = [T]

fn index(&self, _index: RangeFull) -> &[T]

impl<T> Index<RangeFrom<usize>> for [T]1.0.0

Implements slicing with syntax &self[begin ..].

Returns a slice of self from and including the index begin until the end.

Equivalent to &self[begin .. self.len()]

type Output = [T]

fn index(&self, index: RangeFrom<usize>) -> &[T]

impl<T> Index<RangeTo<usize>> for [T]1.0.0

Implements slicing with syntax &self[.. end].

Returns a slice of self from the beginning until but not including the index end.

Equivalent to &self[0 .. end]

type Output = [T]

fn index(&self, index: RangeTo<usize>) -> &[T]

impl<T> Index<Range<usize>> for [T]1.0.0

Implements slicing with syntax &self[begin .. end].

Returns a slice of self for the index range [begin..end).

This operation is O(1).

Panics

Requires that begin <= end and end <= self.len(), otherwise slicing will panic.

type Output = [T]

fn index(&self, index: Range<usize>) -> &[T]

impl<T> IndexMut<usize> for [T]1.0.0

fn index_mut(&mut self, index: usize) -> &mut T

impl<T> Index<usize> for [T]1.0.0

type Output = T

fn index(&self, index: usize) -> &T

impl<T> SliceExt for [T]

type Item = T

Unstable (core_slice_ext #32110)

: stable interface provided by impl [T] in later crates

fn split_at(&self, mid: usize) -> (&[T], &[T])

Unstable (core_slice_ext #32110)

: stable interface provided by impl [T] in later crates

fn iter(&self) -> Iter<T>

Unstable (core_slice_ext #32110)

: stable interface provided by impl [T] in later crates

fn split<P>(&self, pred: P) -> Split<T, P> where P: FnMut(&T) -> bool

Unstable (core_slice_ext #32110)

: stable interface provided by impl [T] in later crates

fn splitn<P>(&self, n: usize, pred: P) -> SplitN<T, P> where P: FnMut(&T) -> bool

Unstable (core_slice_ext #32110)

: stable interface provided by impl [T] in later crates

fn rsplitn<P>(&self, n: usize, pred: P) -> RSplitN<T, P> where P: FnMut(&T) -> bool

Unstable (core_slice_ext #32110)

: stable interface provided by impl [T] in later crates

fn windows(&self, size: usize) -> Windows<T>

Unstable (core_slice_ext #32110)

: stable interface provided by impl [T] in later crates

fn chunks(&self, size: usize) -> Chunks<T>

Unstable (core_slice_ext #32110)

: stable interface provided by impl [T] in later crates

fn get(&self, index: usize) -> Option<&T>

Unstable (core_slice_ext #32110)

: stable interface provided by impl [T] in later crates

fn first(&self) -> Option<&T>

Unstable (core_slice_ext #32110)

: stable interface provided by impl [T] in later crates

fn split_first(&self) -> Option<(&T, &[T])>

Unstable (core_slice_ext #32110)

: stable interface provided by impl [T] in later crates

fn split_last(&self) -> Option<(&T, &[T])>

Unstable (core_slice_ext #32110)

: stable interface provided by impl [T] in later crates

fn last(&self) -> Option<&T>

Unstable (core_slice_ext #32110)

: stable interface provided by impl [T] in later crates

unsafe fn get_unchecked(&self, index: usize) -> &T

Unstable (core_slice_ext #32110)

: stable interface provided by impl [T] in later crates

fn as_ptr(&self) -> *const T

Unstable (core_slice_ext #32110)

: stable interface provided by impl [T] in later crates

fn binary_search_by<F>(&self, f: F) -> Result<usize, usize> where F: FnMut(&T) -> Ordering

Unstable (core_slice_ext #32110)

: stable interface provided by impl [T] in later crates

fn len(&self) -> usize

Unstable (core_slice_ext #32110)

: stable interface provided by impl [T] in later crates

fn get_mut(&mut self, index: usize) -> Option<&mut T>

Unstable (core_slice_ext #32110)

: stable interface provided by impl [T] in later crates

fn split_at_mut(&mut self, mid: usize) -> (&mut [T], &mut [T])

Unstable (core_slice_ext #32110)

: stable interface provided by impl [T] in later crates

fn iter_mut(&mut self) -> IterMut<T>

Unstable (core_slice_ext #32110)

: stable interface provided by impl [T] in later crates

fn last_mut(&mut self) -> Option<&mut T>

Unstable (core_slice_ext #32110)

: stable interface provided by impl [T] in later crates

fn first_mut(&mut self) -> Option<&mut T>

Unstable (core_slice_ext #32110)

: stable interface provided by impl [T] in later crates

fn split_first_mut(&mut self) -> Option<(&mut T, &mut [T])>

Unstable (core_slice_ext #32110)

: stable interface provided by impl [T] in later crates

fn split_last_mut(&mut self) -> Option<(&mut T, &mut [T])>

Unstable (core_slice_ext #32110)

: stable interface provided by impl [T] in later crates

fn split_mut<P>(&mut self, pred: P) -> SplitMut<T, P> where P: FnMut(&T) -> bool

Unstable (core_slice_ext #32110)

: stable interface provided by impl [T] in later crates

fn splitn_mut<P>(&mut self, n: usize, pred: P) -> SplitNMut<T, P> where P: FnMut(&T) -> bool

Unstable (core_slice_ext #32110)

: stable interface provided by impl [T] in later crates

fn rsplitn_mut<P>(&mut self, n: usize, pred: P) -> RSplitNMut<T, P> where P: FnMut(&T) -> bool

Unstable (core_slice_ext #32110)

: stable interface provided by impl [T] in later crates

fn chunks_mut(&mut self, chunk_size: usize) -> ChunksMut<T>

Unstable (core_slice_ext #32110)

: stable interface provided by impl [T] in later crates

fn swap(&mut self, a: usize, b: usize)

Unstable (core_slice_ext #32110)

: stable interface provided by impl [T] in later crates

fn reverse(&mut self)

Unstable (core_slice_ext #32110)

: stable interface provided by impl [T] in later crates

unsafe fn get_unchecked_mut(&mut self, index: usize) -> &mut T

Unstable (core_slice_ext #32110)

: stable interface provided by impl [T] in later crates

fn as_mut_ptr(&mut self) -> *mut T

Unstable (core_slice_ext #32110)

: stable interface provided by impl [T] in later crates

fn contains(&self, x: &T) -> bool where T: PartialEq<T>

Unstable (core_slice_ext #32110)

: stable interface provided by impl [T] in later crates

fn starts_with(&self, needle: &[T]) -> bool where T: PartialEq<T>

Unstable (core_slice_ext #32110)

: stable interface provided by impl [T] in later crates

fn ends_with(&self, needle: &[T]) -> bool where T: PartialEq<T>

Unstable (core_slice_ext #32110)

: stable interface provided by impl [T] in later crates

fn binary_search(&self, x: &T) -> Result<usize, usize> where T: Ord

Unstable (core_slice_ext #32110)

: stable interface provided by impl [T] in later crates

fn clone_from_slice(&mut self, src: &[T]) where T: Clone

Unstable (core_slice_ext #32110)

: stable interface provided by impl [T] in later crates

fn copy_from_slice(&mut self, src: &[T]) where T: Copy

Unstable (core_slice_ext #32110)

: stable interface provided by impl [T] in later crates

fn binary_search_by_key<B, F>(&self, b: &B, f: F) -> Result<usize, usize> where B: Ord, F: FnMut(&[T]::Item) -> B

Unstable (core_slice_ext #32110)

: stable interface provided by impl [T] in later crates

impl<T> Repr<Slice<T>> for [T]

fn repr(&self) -> T

impl<'a, 'b, A, B> PartialEq<[A; 32]> for &'b mut [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 32]) -> bool

fn ne(&self, other: &[A; 32]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 32]> for &'b [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 32]) -> bool

fn ne(&self, other: &[A; 32]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 32]> for [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 32]) -> bool

fn ne(&self, other: &[A; 32]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 31]> for &'b mut [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 31]) -> bool

fn ne(&self, other: &[A; 31]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 31]> for &'b [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 31]) -> bool

fn ne(&self, other: &[A; 31]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 31]> for [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 31]) -> bool

fn ne(&self, other: &[A; 31]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 30]> for &'b mut [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 30]) -> bool

fn ne(&self, other: &[A; 30]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 30]> for &'b [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 30]) -> bool

fn ne(&self, other: &[A; 30]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 30]> for [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 30]) -> bool

fn ne(&self, other: &[A; 30]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 29]> for &'b mut [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 29]) -> bool

fn ne(&self, other: &[A; 29]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 29]> for &'b [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 29]) -> bool

fn ne(&self, other: &[A; 29]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 29]> for [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 29]) -> bool

fn ne(&self, other: &[A; 29]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 28]> for &'b mut [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 28]) -> bool

fn ne(&self, other: &[A; 28]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 28]> for &'b [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 28]) -> bool

fn ne(&self, other: &[A; 28]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 28]> for [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 28]) -> bool

fn ne(&self, other: &[A; 28]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 27]> for &'b mut [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 27]) -> bool

fn ne(&self, other: &[A; 27]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 27]> for &'b [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 27]) -> bool

fn ne(&self, other: &[A; 27]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 27]> for [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 27]) -> bool

fn ne(&self, other: &[A; 27]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 26]> for &'b mut [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 26]) -> bool

fn ne(&self, other: &[A; 26]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 26]> for &'b [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 26]) -> bool

fn ne(&self, other: &[A; 26]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 26]> for [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 26]) -> bool

fn ne(&self, other: &[A; 26]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 25]> for &'b mut [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 25]) -> bool

fn ne(&self, other: &[A; 25]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 25]> for &'b [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 25]) -> bool

fn ne(&self, other: &[A; 25]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 25]> for [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 25]) -> bool

fn ne(&self, other: &[A; 25]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 24]> for &'b mut [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 24]) -> bool

fn ne(&self, other: &[A; 24]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 24]> for &'b [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 24]) -> bool

fn ne(&self, other: &[A; 24]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 24]> for [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 24]) -> bool

fn ne(&self, other: &[A; 24]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 23]> for &'b mut [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 23]) -> bool

fn ne(&self, other: &[A; 23]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 23]> for &'b [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 23]) -> bool

fn ne(&self, other: &[A; 23]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 23]> for [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 23]) -> bool

fn ne(&self, other: &[A; 23]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 22]> for &'b mut [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 22]) -> bool

fn ne(&self, other: &[A; 22]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 22]> for &'b [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 22]) -> bool

fn ne(&self, other: &[A; 22]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 22]> for [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 22]) -> bool

fn ne(&self, other: &[A; 22]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 21]> for &'b mut [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 21]) -> bool

fn ne(&self, other: &[A; 21]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 21]> for &'b [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 21]) -> bool

fn ne(&self, other: &[A; 21]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 21]> for [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 21]) -> bool

fn ne(&self, other: &[A; 21]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 20]> for &'b mut [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 20]) -> bool

fn ne(&self, other: &[A; 20]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 20]> for &'b [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 20]) -> bool

fn ne(&self, other: &[A; 20]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 20]> for [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 20]) -> bool

fn ne(&self, other: &[A; 20]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 19]> for &'b mut [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 19]) -> bool

fn ne(&self, other: &[A; 19]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 19]> for &'b [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 19]) -> bool

fn ne(&self, other: &[A; 19]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 19]> for [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 19]) -> bool

fn ne(&self, other: &[A; 19]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 18]> for &'b mut [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 18]) -> bool

fn ne(&self, other: &[A; 18]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 18]> for &'b [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 18]) -> bool

fn ne(&self, other: &[A; 18]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 18]> for [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 18]) -> bool

fn ne(&self, other: &[A; 18]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 17]> for &'b mut [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 17]) -> bool

fn ne(&self, other: &[A; 17]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 17]> for &'b [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 17]) -> bool

fn ne(&self, other: &[A; 17]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 17]> for [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 17]) -> bool

fn ne(&self, other: &[A; 17]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 16]> for &'b mut [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 16]) -> bool

fn ne(&self, other: &[A; 16]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 16]> for &'b [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 16]) -> bool

fn ne(&self, other: &[A; 16]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 16]> for [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 16]) -> bool

fn ne(&self, other: &[A; 16]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 15]> for &'b mut [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 15]) -> bool

fn ne(&self, other: &[A; 15]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 15]> for &'b [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 15]) -> bool

fn ne(&self, other: &[A; 15]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 15]> for [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 15]) -> bool

fn ne(&self, other: &[A; 15]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 14]> for &'b mut [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 14]) -> bool

fn ne(&self, other: &[A; 14]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 14]> for &'b [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 14]) -> bool

fn ne(&self, other: &[A; 14]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 14]> for [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 14]) -> bool

fn ne(&self, other: &[A; 14]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 13]> for &'b mut [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 13]) -> bool

fn ne(&self, other: &[A; 13]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 13]> for &'b [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 13]) -> bool

fn ne(&self, other: &[A; 13]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 13]> for [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 13]) -> bool

fn ne(&self, other: &[A; 13]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 12]> for &'b mut [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 12]) -> bool

fn ne(&self, other: &[A; 12]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 12]> for &'b [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 12]) -> bool

fn ne(&self, other: &[A; 12]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 12]> for [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 12]) -> bool

fn ne(&self, other: &[A; 12]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 11]> for &'b mut [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 11]) -> bool

fn ne(&self, other: &[A; 11]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 11]> for &'b [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 11]) -> bool

fn ne(&self, other: &[A; 11]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 11]> for [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 11]) -> bool

fn ne(&self, other: &[A; 11]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 10]> for &'b mut [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 10]) -> bool

fn ne(&self, other: &[A; 10]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 10]> for &'b [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 10]) -> bool

fn ne(&self, other: &[A; 10]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 10]> for [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 10]) -> bool

fn ne(&self, other: &[A; 10]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 9]> for &'b mut [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 9]) -> bool

fn ne(&self, other: &[A; 9]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 9]> for &'b [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 9]) -> bool

fn ne(&self, other: &[A; 9]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 9]> for [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 9]) -> bool

fn ne(&self, other: &[A; 9]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 8]> for &'b mut [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 8]) -> bool

fn ne(&self, other: &[A; 8]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 8]> for &'b [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 8]) -> bool

fn ne(&self, other: &[A; 8]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 8]> for [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 8]) -> bool

fn ne(&self, other: &[A; 8]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 7]> for &'b mut [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 7]) -> bool

fn ne(&self, other: &[A; 7]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 7]> for &'b [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 7]) -> bool

fn ne(&self, other: &[A; 7]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 7]> for [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 7]) -> bool

fn ne(&self, other: &[A; 7]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 6]> for &'b mut [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 6]) -> bool

fn ne(&self, other: &[A; 6]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 6]> for &'b [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 6]) -> bool

fn ne(&self, other: &[A; 6]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 6]> for [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 6]) -> bool

fn ne(&self, other: &[A; 6]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 5]> for &'b mut [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 5]) -> bool

fn ne(&self, other: &[A; 5]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 5]> for &'b [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 5]) -> bool

fn ne(&self, other: &[A; 5]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 5]> for [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 5]) -> bool

fn ne(&self, other: &[A; 5]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 4]> for &'b mut [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 4]) -> bool

fn ne(&self, other: &[A; 4]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 4]> for &'b [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 4]) -> bool

fn ne(&self, other: &[A; 4]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 4]> for [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 4]) -> bool

fn ne(&self, other: &[A; 4]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 3]> for &'b mut [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 3]) -> bool

fn ne(&self, other: &[A; 3]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 3]> for &'b [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 3]) -> bool

fn ne(&self, other: &[A; 3]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 3]> for [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 3]) -> bool

fn ne(&self, other: &[A; 3]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 2]> for &'b mut [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 2]) -> bool

fn ne(&self, other: &[A; 2]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 2]> for &'b [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 2]) -> bool

fn ne(&self, other: &[A; 2]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 2]> for [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 2]) -> bool

fn ne(&self, other: &[A; 2]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 1]> for &'b mut [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 1]) -> bool

fn ne(&self, other: &[A; 1]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 1]> for &'b [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 1]) -> bool

fn ne(&self, other: &[A; 1]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 1]> for [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 1]) -> bool

fn ne(&self, other: &[A; 1]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 0]> for &'b mut [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 0]) -> bool

fn ne(&self, other: &[A; 0]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 0]> for &'b [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 0]) -> bool

fn ne(&self, other: &[A; 0]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 0]> for [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 0]) -> bool

fn ne(&self, other: &[A; 0]) -> bool

impl<T> AsMut<[T]> for [T]1.0.0

fn as_mut(&mut self) -> &mut [T]

impl<T> AsRef<[T]> for [T]1.0.0

fn as_ref(&self) -> &[T]

impl<S> SliceConcatExt<str> for [S] where S: Borrow<str>

type Output = String

Unstable (slice_concat_ext #27747)

: trait should not have to exist

fn concat(&self) -> String

Unstable (slice_concat_ext #27747)

: trait should not have to exist

fn join(&self, sep: &str) -> String

Unstable (slice_concat_ext #27747)

: trait should not have to exist

fn connect(&self, sep: &str) -> String

Unstable (slice_concat_ext #27747)

: trait should not have to exist

impl<T> ToOwned for [T] where T: Clone1.0.0

type Owned = Vec<T>

fn to_owned(&self) -> Vec<T>

impl<T, V> SliceConcatExt<T> for [V] where V: Borrow<[T]>, T: Clone

type Output = Vec<T>

Unstable (slice_concat_ext #27747)

: trait should not have to exist

fn concat(&self) -> Vec<T>

Unstable (slice_concat_ext #27747)

: trait should not have to exist

fn join(&self, sep: &T) -> Vec<T>

Unstable (slice_concat_ext #27747)

: trait should not have to exist

fn connect(&self, sep: &T) -> Vec<T>

Unstable (slice_concat_ext #27747)

: trait should not have to exist

impl AsciiExt for [u8]1.0.0

type Owned = Vec<u8>

fn is_ascii(&self) -> bool

fn to_ascii_uppercase(&self) -> Vec<u8>

fn to_ascii_lowercase(&self) -> Vec<u8>

fn eq_ignore_ascii_case(&self, other: &[u8]) -> bool

fn make_ascii_uppercase(&mut self)

fn make_ascii_lowercase(&mut self)

impl<'a> Read for &'a [u8]1.0.0

fn read(&mut self, buf: &mut [u8]) -> Result<usize>

fn read_exact(&mut self, buf: &mut [u8]) -> Result<()>

fn read_to_end(&mut self, buf: &mut Vec<u8>) -> Result<usize>1.0.0

fn read_to_string(&mut self, buf: &mut String) -> Result<usize>1.0.0

fn by_ref(&mut self) -> &mut Self where Self: Sized1.0.0

fn bytes(self) -> Bytes<Self> where Self: Sized1.0.0

fn chars(self) -> Chars<Self> where Self: Sized

fn chain<R: Read>(self, next: R) -> Chain<Self, R> where Self: Sized1.0.0

fn take(self, limit: u64) -> Take<Self> where Self: Sized1.0.0

impl<'a> BufRead for &'a [u8]1.0.0

fn fill_buf(&mut self) -> Result<&[u8]>

fn consume(&mut self, amt: usize)

fn read_until(&mut self, byte: u8, buf: &mut Vec<u8>) -> Result<usize>1.0.0

fn read_line(&mut self, buf: &mut String) -> Result<usize>1.0.0

fn split(self, byte: u8) -> Split<Self> where Self: Sized1.0.0

fn lines(self) -> Lines<Self> where Self: Sized1.0.0

impl<'a> Write for &'a mut [u8]1.0.0

fn write(&mut self, data: &[u8]) -> Result<usize>

fn write_all(&mut self, data: &[u8]) -> Result<()>

fn flush(&mut self) -> Result<()>

fn write_fmt(&mut self, fmt: Arguments) -> Result<()>1.0.0

fn by_ref(&mut self) -> &mut Self where Self: Sized1.0.0

impl<'a> ToSocketAddrs for &'a [SocketAddr]1.8.0

type Iter = Cloned<Iter<'a, SocketAddr>>

fn to_socket_addrs(&self) -> Result<Self::Iter>