Primitive Type f64 []

The 64-bit floating point type.

See also the std::f64 module.

However, please note that examples are shared between the f64 and f32 primitive types. So it's normal if you see usage of f32 in there.

Methods

impl f64

fn is_nan(self) -> bool1.0.0

Returns true if this value is NaN and false otherwise.

fn main() { use std::f64; let nan = f64::NAN; let f = 7.0_f64; assert!(nan.is_nan()); assert!(!f.is_nan()); }
use std::f64;

let nan = f64::NAN;
let f = 7.0_f64;

assert!(nan.is_nan());
assert!(!f.is_nan());

fn is_infinite(self) -> bool1.0.0

Returns true if this value is positive infinity or negative infinity and false otherwise.

fn main() { use std::f64; let f = 7.0f64; let inf = f64::INFINITY; let neg_inf = f64::NEG_INFINITY; let nan = f64::NAN; assert!(!f.is_infinite()); assert!(!nan.is_infinite()); assert!(inf.is_infinite()); assert!(neg_inf.is_infinite()); }
use std::f64;

let f = 7.0f64;
let inf = f64::INFINITY;
let neg_inf = f64::NEG_INFINITY;
let nan = f64::NAN;

assert!(!f.is_infinite());
assert!(!nan.is_infinite());

assert!(inf.is_infinite());
assert!(neg_inf.is_infinite());

fn is_finite(self) -> bool1.0.0

Returns true if this number is neither infinite nor NaN.

fn main() { use std::f64; let f = 7.0f64; let inf: f64 = f64::INFINITY; let neg_inf: f64 = f64::NEG_INFINITY; let nan: f64 = f64::NAN; assert!(f.is_finite()); assert!(!nan.is_finite()); assert!(!inf.is_finite()); assert!(!neg_inf.is_finite()); }
use std::f64;

let f = 7.0f64;
let inf: f64 = f64::INFINITY;
let neg_inf: f64 = f64::NEG_INFINITY;
let nan: f64 = f64::NAN;

assert!(f.is_finite());

assert!(!nan.is_finite());
assert!(!inf.is_finite());
assert!(!neg_inf.is_finite());

fn is_normal(self) -> bool1.0.0

Returns true if the number is neither zero, infinite, subnormal, or NaN.

fn main() { use std::f32; let min = f32::MIN_POSITIVE; // 1.17549435e-38f64 let max = f32::MAX; let lower_than_min = 1.0e-40_f32; let zero = 0.0f32; assert!(min.is_normal()); assert!(max.is_normal()); assert!(!zero.is_normal()); assert!(!f32::NAN.is_normal()); assert!(!f32::INFINITY.is_normal()); // Values between `0` and `min` are Subnormal. assert!(!lower_than_min.is_normal()); }
use std::f32;

let min = f32::MIN_POSITIVE; // 1.17549435e-38f64
let max = f32::MAX;
let lower_than_min = 1.0e-40_f32;
let zero = 0.0f32;

assert!(min.is_normal());
assert!(max.is_normal());

assert!(!zero.is_normal());
assert!(!f32::NAN.is_normal());
assert!(!f32::INFINITY.is_normal());
// Values between `0` and `min` are Subnormal.
assert!(!lower_than_min.is_normal());

fn classify(self) -> FpCategory1.0.0

Returns the floating point category of the number. If only one property is going to be tested, it is generally faster to use the specific predicate instead.

fn main() { use std::num::FpCategory; use std::f64; let num = 12.4_f64; let inf = f64::INFINITY; assert_eq!(num.classify(), FpCategory::Normal); assert_eq!(inf.classify(), FpCategory::Infinite); }
use std::num::FpCategory;
use std::f64;

let num = 12.4_f64;
let inf = f64::INFINITY;

assert_eq!(num.classify(), FpCategory::Normal);
assert_eq!(inf.classify(), FpCategory::Infinite);

fn integer_decode(self) -> (u64, i16, i8)

Unstable (float_extras #27752)

: signature is undecided

Returns the mantissa, base 2 exponent, and sign as integers, respectively. The original number can be recovered by sign * mantissa * 2 ^ exponent. The floating point encoding is documented in the Reference.

#![feature(float_extras)] fn main() { let num = 2.0f64; // (8388608, -22, 1) let (mantissa, exponent, sign) = num.integer_decode(); let sign_f = sign as f64; let mantissa_f = mantissa as f64; let exponent_f = num.powf(exponent as f64); // 1 * 8388608 * 2^(-22) == 2 let abs_difference = (sign_f * mantissa_f * exponent_f - num).abs(); assert!(abs_difference < 1e-10); }
#![feature(float_extras)]

let num = 2.0f64;

// (8388608, -22, 1)
let (mantissa, exponent, sign) = num.integer_decode();
let sign_f = sign as f64;
let mantissa_f = mantissa as f64;
let exponent_f = num.powf(exponent as f64);

// 1 * 8388608 * 2^(-22) == 2
let abs_difference = (sign_f * mantissa_f * exponent_f - num).abs();

assert!(abs_difference < 1e-10);

fn floor(self) -> f641.0.0

Returns the largest integer less than or equal to a number.

fn main() { let f = 3.99_f64; let g = 3.0_f64; assert_eq!(f.floor(), 3.0); assert_eq!(g.floor(), 3.0); }
let f = 3.99_f64;
let g = 3.0_f64;

assert_eq!(f.floor(), 3.0);
assert_eq!(g.floor(), 3.0);

fn ceil(self) -> f641.0.0

Returns the smallest integer greater than or equal to a number.

fn main() { let f = 3.01_f64; let g = 4.0_f64; assert_eq!(f.ceil(), 4.0); assert_eq!(g.ceil(), 4.0); }
let f = 3.01_f64;
let g = 4.0_f64;

assert_eq!(f.ceil(), 4.0);
assert_eq!(g.ceil(), 4.0);

fn round(self) -> f641.0.0

Returns the nearest integer to a number. Round half-way cases away from 0.0.

fn main() { let f = 3.3_f64; let g = -3.3_f64; assert_eq!(f.round(), 3.0); assert_eq!(g.round(), -3.0); }
let f = 3.3_f64;
let g = -3.3_f64;

assert_eq!(f.round(), 3.0);
assert_eq!(g.round(), -3.0);

fn trunc(self) -> f641.0.0

Returns the integer part of a number.

fn main() { let f = 3.3_f64; let g = -3.7_f64; assert_eq!(f.trunc(), 3.0); assert_eq!(g.trunc(), -3.0); }
let f = 3.3_f64;
let g = -3.7_f64;

assert_eq!(f.trunc(), 3.0);
assert_eq!(g.trunc(), -3.0);

fn fract(self) -> f641.0.0

Returns the fractional part of a number.

fn main() { let x = 3.5_f64; let y = -3.5_f64; let abs_difference_x = (x.fract() - 0.5).abs(); let abs_difference_y = (y.fract() - (-0.5)).abs(); assert!(abs_difference_x < 1e-10); assert!(abs_difference_y < 1e-10); }
let x = 3.5_f64;
let y = -3.5_f64;
let abs_difference_x = (x.fract() - 0.5).abs();
let abs_difference_y = (y.fract() - (-0.5)).abs();

assert!(abs_difference_x < 1e-10);
assert!(abs_difference_y < 1e-10);

fn abs(self) -> f641.0.0

Computes the absolute value of self. Returns NAN if the number is NAN.

fn main() { use std::f64; let x = 3.5_f64; let y = -3.5_f64; let abs_difference_x = (x.abs() - x).abs(); let abs_difference_y = (y.abs() - (-y)).abs(); assert!(abs_difference_x < 1e-10); assert!(abs_difference_y < 1e-10); assert!(f64::NAN.abs().is_nan()); }
use std::f64;

let x = 3.5_f64;
let y = -3.5_f64;

let abs_difference_x = (x.abs() - x).abs();
let abs_difference_y = (y.abs() - (-y)).abs();

assert!(abs_difference_x < 1e-10);
assert!(abs_difference_y < 1e-10);

assert!(f64::NAN.abs().is_nan());

fn signum(self) -> f641.0.0

Returns a number that represents the sign of self.

  • 1.0 if the number is positive, +0.0 or INFINITY
  • -1.0 if the number is negative, -0.0 or NEG_INFINITY
  • NAN if the number is NAN
fn main() { use std::f64; let f = 3.5_f64; assert_eq!(f.signum(), 1.0); assert_eq!(f64::NEG_INFINITY.signum(), -1.0); assert!(f64::NAN.signum().is_nan()); }
use std::f64;

let f = 3.5_f64;

assert_eq!(f.signum(), 1.0);
assert_eq!(f64::NEG_INFINITY.signum(), -1.0);

assert!(f64::NAN.signum().is_nan());

fn is_sign_positive(self) -> bool1.0.0

Returns true if self's sign bit is positive, including +0.0 and INFINITY.

fn main() { use std::f64; let nan: f64 = f64::NAN; let f = 7.0_f64; let g = -7.0_f64; assert!(f.is_sign_positive()); assert!(!g.is_sign_positive()); // Requires both tests to determine if is `NaN` assert!(!nan.is_sign_positive() && !nan.is_sign_negative()); }
use std::f64;

let nan: f64 = f64::NAN;

let f = 7.0_f64;
let g = -7.0_f64;

assert!(f.is_sign_positive());
assert!(!g.is_sign_positive());
// Requires both tests to determine if is `NaN`
assert!(!nan.is_sign_positive() && !nan.is_sign_negative());

fn is_positive(self) -> bool1.0.0

Deprecated since 1.0.0

: renamed to is_sign_positive

fn is_sign_negative(self) -> bool1.0.0

Returns true if self's sign is negative, including -0.0 and NEG_INFINITY.

fn main() { use std::f64; let nan = f64::NAN; let f = 7.0_f64; let g = -7.0_f64; assert!(!f.is_sign_negative()); assert!(g.is_sign_negative()); // Requires both tests to determine if is `NaN`. assert!(!nan.is_sign_positive() && !nan.is_sign_negative()); }
use std::f64;

let nan = f64::NAN;

let f = 7.0_f64;
let g = -7.0_f64;

assert!(!f.is_sign_negative());
assert!(g.is_sign_negative());
// Requires both tests to determine if is `NaN`.
assert!(!nan.is_sign_positive() && !nan.is_sign_negative());

fn is_negative(self) -> bool1.0.0

Deprecated since 1.0.0

: renamed to is_sign_negative

fn mul_add(self, a: f64, b: f64) -> f641.0.0

Fused multiply-add. Computes (self * a) + b with only one rounding error. This produces a more accurate result with better performance than a separate multiplication operation followed by an add.

fn main() { let m = 10.0_f64; let x = 4.0_f64; let b = 60.0_f64; // 100.0 let abs_difference = (m.mul_add(x, b) - (m*x + b)).abs(); assert!(abs_difference < 1e-10); }
let m = 10.0_f64;
let x = 4.0_f64;
let b = 60.0_f64;

// 100.0
let abs_difference = (m.mul_add(x, b) - (m*x + b)).abs();

assert!(abs_difference < 1e-10);

fn recip(self) -> f641.0.0

Takes the reciprocal (inverse) of a number, 1/x.

fn main() { let x = 2.0_f64; let abs_difference = (x.recip() - (1.0/x)).abs(); assert!(abs_difference < 1e-10); }
let x = 2.0_f64;
let abs_difference = (x.recip() - (1.0/x)).abs();

assert!(abs_difference < 1e-10);

fn powi(self, n: i32) -> f641.0.0

Raises a number to an integer power.

Using this function is generally faster than using powf

fn main() { let x = 2.0_f64; let abs_difference = (x.powi(2) - x*x).abs(); assert!(abs_difference < 1e-10); }
let x = 2.0_f64;
let abs_difference = (x.powi(2) - x*x).abs();

assert!(abs_difference < 1e-10);

fn powf(self, n: f64) -> f641.0.0

Raises a number to a floating point power.

fn main() { let x = 2.0_f64; let abs_difference = (x.powf(2.0) - x*x).abs(); assert!(abs_difference < 1e-10); }
let x = 2.0_f64;
let abs_difference = (x.powf(2.0) - x*x).abs();

assert!(abs_difference < 1e-10);

fn sqrt(self) -> f641.0.0

Takes the square root of a number.

Returns NaN if self is a negative number.

fn main() { let positive = 4.0_f64; let negative = -4.0_f64; let abs_difference = (positive.sqrt() - 2.0).abs(); assert!(abs_difference < 1e-10); assert!(negative.sqrt().is_nan()); }
let positive = 4.0_f64;
let negative = -4.0_f64;

let abs_difference = (positive.sqrt() - 2.0).abs();

assert!(abs_difference < 1e-10);
assert!(negative.sqrt().is_nan());

fn exp(self) -> f641.0.0

Returns e^(self), (the exponential function).

fn main() { let one = 1.0_f64; // e^1 let e = one.exp(); // ln(e) - 1 == 0 let abs_difference = (e.ln() - 1.0).abs(); assert!(abs_difference < 1e-10); }
let one = 1.0_f64;
// e^1
let e = one.exp();

// ln(e) - 1 == 0
let abs_difference = (e.ln() - 1.0).abs();

assert!(abs_difference < 1e-10);

fn exp2(self) -> f641.0.0

Returns 2^(self).

fn main() { let f = 2.0_f64; // 2^2 - 4 == 0 let abs_difference = (f.exp2() - 4.0).abs(); assert!(abs_difference < 1e-10); }
let f = 2.0_f64;

// 2^2 - 4 == 0
let abs_difference = (f.exp2() - 4.0).abs();

assert!(abs_difference < 1e-10);

fn ln(self) -> f641.0.0

Returns the natural logarithm of the number.

fn main() { let one = 1.0_f64; // e^1 let e = one.exp(); // ln(e) - 1 == 0 let abs_difference = (e.ln() - 1.0).abs(); assert!(abs_difference < 1e-10); }
let one = 1.0_f64;
// e^1
let e = one.exp();

// ln(e) - 1 == 0
let abs_difference = (e.ln() - 1.0).abs();

assert!(abs_difference < 1e-10);

fn log(self, base: f64) -> f641.0.0

Returns the logarithm of the number with respect to an arbitrary base.

fn main() { let ten = 10.0_f64; let two = 2.0_f64; // log10(10) - 1 == 0 let abs_difference_10 = (ten.log(10.0) - 1.0).abs(); // log2(2) - 1 == 0 let abs_difference_2 = (two.log(2.0) - 1.0).abs(); assert!(abs_difference_10 < 1e-10); assert!(abs_difference_2 < 1e-10); }
let ten = 10.0_f64;
let two = 2.0_f64;

// log10(10) - 1 == 0
let abs_difference_10 = (ten.log(10.0) - 1.0).abs();

// log2(2) - 1 == 0
let abs_difference_2 = (two.log(2.0) - 1.0).abs();

assert!(abs_difference_10 < 1e-10);
assert!(abs_difference_2 < 1e-10);

fn log2(self) -> f641.0.0

Returns the base 2 logarithm of the number.

fn main() { let two = 2.0_f64; // log2(2) - 1 == 0 let abs_difference = (two.log2() - 1.0).abs(); assert!(abs_difference < 1e-10); }
let two = 2.0_f64;

// log2(2) - 1 == 0
let abs_difference = (two.log2() - 1.0).abs();

assert!(abs_difference < 1e-10);

fn log10(self) -> f641.0.0

Returns the base 10 logarithm of the number.

fn main() { let ten = 10.0_f64; // log10(10) - 1 == 0 let abs_difference = (ten.log10() - 1.0).abs(); assert!(abs_difference < 1e-10); }
let ten = 10.0_f64;

// log10(10) - 1 == 0
let abs_difference = (ten.log10() - 1.0).abs();

assert!(abs_difference < 1e-10);

fn to_degrees(self) -> f641.0.0

Converts radians to degrees.

fn main() { use std::f64::consts; let angle = consts::PI; let abs_difference = (angle.to_degrees() - 180.0).abs(); assert!(abs_difference < 1e-10); }
use std::f64::consts;

let angle = consts::PI;

let abs_difference = (angle.to_degrees() - 180.0).abs();

assert!(abs_difference < 1e-10);

fn to_radians(self) -> f641.0.0

Converts degrees to radians.

fn main() { use std::f64::consts; let angle = 180.0_f64; let abs_difference = (angle.to_radians() - consts::PI).abs(); assert!(abs_difference < 1e-10); }
use std::f64::consts;

let angle = 180.0_f64;

let abs_difference = (angle.to_radians() - consts::PI).abs();

assert!(abs_difference < 1e-10);

fn ldexp(x: f64, exp: isize) -> f64

Unstable (float_extras #27752)

: pending integer conventions

Constructs a floating point number of x*2^exp.

#![feature(float_extras)] fn main() { // 3*2^2 - 12 == 0 let abs_difference = (f64::ldexp(3.0, 2) - 12.0).abs(); assert!(abs_difference < 1e-10); }
#![feature(float_extras)]

// 3*2^2 - 12 == 0
let abs_difference = (f64::ldexp(3.0, 2) - 12.0).abs();

assert!(abs_difference < 1e-10);

fn frexp(self) -> (f64, isize)

Unstable (float_extras #27752)

: pending integer conventions

Breaks the number into a normalized fraction and a base-2 exponent, satisfying:

  • self = x * 2^exp
  • 0.5 <= abs(x) < 1.0
#![feature(float_extras)] fn main() { let x = 4.0_f64; // (1/2)*2^3 -> 1 * 8/2 -> 4.0 let f = x.frexp(); let abs_difference_0 = (f.0 - 0.5).abs(); let abs_difference_1 = (f.1 as f64 - 3.0).abs(); assert!(abs_difference_0 < 1e-10); assert!(abs_difference_1 < 1e-10); }
#![feature(float_extras)]

let x = 4.0_f64;

// (1/2)*2^3 -> 1 * 8/2 -> 4.0
let f = x.frexp();
let abs_difference_0 = (f.0 - 0.5).abs();
let abs_difference_1 = (f.1 as f64 - 3.0).abs();

assert!(abs_difference_0 < 1e-10);
assert!(abs_difference_1 < 1e-10);

fn next_after(self, other: f64) -> f64

Unstable (float_extras #27752)

: unsure about its place in the world

Returns the next representable floating-point value in the direction of other.

#![feature(float_extras)] fn main() { let x = 1.0f32; let abs_diff = (x.next_after(2.0) - 1.00000011920928955078125_f32).abs(); assert!(abs_diff < 1e-10); }
#![feature(float_extras)]

let x = 1.0f32;

let abs_diff = (x.next_after(2.0) - 1.00000011920928955078125_f32).abs();

assert!(abs_diff < 1e-10);

fn max(self, other: f64) -> f641.0.0

Returns the maximum of the two numbers.

fn main() { let x = 1.0_f64; let y = 2.0_f64; assert_eq!(x.max(y), y); }
let x = 1.0_f64;
let y = 2.0_f64;

assert_eq!(x.max(y), y);

If one of the arguments is NaN, then the other argument is returned.

fn min(self, other: f64) -> f641.0.0

Returns the minimum of the two numbers.

fn main() { let x = 1.0_f64; let y = 2.0_f64; assert_eq!(x.min(y), x); }
let x = 1.0_f64;
let y = 2.0_f64;

assert_eq!(x.min(y), x);

If one of the arguments is NaN, then the other argument is returned.

fn abs_sub(self, other: f64) -> f641.0.0

The positive difference of two numbers.

  • If self <= other: 0:0
  • Else: self - other
fn main() { let x = 3.0_f64; let y = -3.0_f64; let abs_difference_x = (x.abs_sub(1.0) - 2.0).abs(); let abs_difference_y = (y.abs_sub(1.0) - 0.0).abs(); assert!(abs_difference_x < 1e-10); assert!(abs_difference_y < 1e-10); }
let x = 3.0_f64;
let y = -3.0_f64;

let abs_difference_x = (x.abs_sub(1.0) - 2.0).abs();
let abs_difference_y = (y.abs_sub(1.0) - 0.0).abs();

assert!(abs_difference_x < 1e-10);
assert!(abs_difference_y < 1e-10);

fn cbrt(self) -> f641.0.0

Takes the cubic root of a number.

fn main() { let x = 8.0_f64; // x^(1/3) - 2 == 0 let abs_difference = (x.cbrt() - 2.0).abs(); assert!(abs_difference < 1e-10); }
let x = 8.0_f64;

// x^(1/3) - 2 == 0
let abs_difference = (x.cbrt() - 2.0).abs();

assert!(abs_difference < 1e-10);

fn hypot(self, other: f64) -> f641.0.0

Calculates the length of the hypotenuse of a right-angle triangle given legs of length x and y.

fn main() { let x = 2.0_f64; let y = 3.0_f64; // sqrt(x^2 + y^2) let abs_difference = (x.hypot(y) - (x.powi(2) + y.powi(2)).sqrt()).abs(); assert!(abs_difference < 1e-10); }
let x = 2.0_f64;
let y = 3.0_f64;

// sqrt(x^2 + y^2)
let abs_difference = (x.hypot(y) - (x.powi(2) + y.powi(2)).sqrt()).abs();

assert!(abs_difference < 1e-10);

fn sin(self) -> f641.0.0

Computes the sine of a number (in radians).

fn main() { use std::f64; let x = f64::consts::PI/2.0; let abs_difference = (x.sin() - 1.0).abs(); assert!(abs_difference < 1e-10); }
use std::f64;

let x = f64::consts::PI/2.0;

let abs_difference = (x.sin() - 1.0).abs();

assert!(abs_difference < 1e-10);

fn cos(self) -> f641.0.0

Computes the cosine of a number (in radians).

fn main() { use std::f64; let x = 2.0*f64::consts::PI; let abs_difference = (x.cos() - 1.0).abs(); assert!(abs_difference < 1e-10); }
use std::f64;

let x = 2.0*f64::consts::PI;

let abs_difference = (x.cos() - 1.0).abs();

assert!(abs_difference < 1e-10);

fn tan(self) -> f641.0.0

Computes the tangent of a number (in radians).

fn main() { use std::f64; let x = f64::consts::PI/4.0; let abs_difference = (x.tan() - 1.0).abs(); assert!(abs_difference < 1e-14); }
use std::f64;

let x = f64::consts::PI/4.0;
let abs_difference = (x.tan() - 1.0).abs();

assert!(abs_difference < 1e-14);

fn asin(self) -> f641.0.0

Computes the arcsine of a number. Return value is in radians in the range [-pi/2, pi/2] or NaN if the number is outside the range [-1, 1].

fn main() { use std::f64; let f = f64::consts::PI / 2.0; // asin(sin(pi/2)) let abs_difference = (f.sin().asin() - f64::consts::PI / 2.0).abs(); assert!(abs_difference < 1e-10); }
use std::f64;

let f = f64::consts::PI / 2.0;

// asin(sin(pi/2))
let abs_difference = (f.sin().asin() - f64::consts::PI / 2.0).abs();

assert!(abs_difference < 1e-10);

fn acos(self) -> f641.0.0

Computes the arccosine of a number. Return value is in radians in the range [0, pi] or NaN if the number is outside the range [-1, 1].

fn main() { use std::f64; let f = f64::consts::PI / 4.0; // acos(cos(pi/4)) let abs_difference = (f.cos().acos() - f64::consts::PI / 4.0).abs(); assert!(abs_difference < 1e-10); }
use std::f64;

let f = f64::consts::PI / 4.0;

// acos(cos(pi/4))
let abs_difference = (f.cos().acos() - f64::consts::PI / 4.0).abs();

assert!(abs_difference < 1e-10);

fn atan(self) -> f641.0.0

Computes the arctangent of a number. Return value is in radians in the range [-pi/2, pi/2];

fn main() { let f = 1.0_f64; // atan(tan(1)) let abs_difference = (f.tan().atan() - 1.0).abs(); assert!(abs_difference < 1e-10); }
let f = 1.0_f64;

// atan(tan(1))
let abs_difference = (f.tan().atan() - 1.0).abs();

assert!(abs_difference < 1e-10);

fn atan2(self, other: f64) -> f641.0.0

Computes the four quadrant arctangent of self (y) and other (x).

  • x = 0, y = 0: 0
  • x >= 0: arctan(y/x) -> [-pi/2, pi/2]
  • y >= 0: arctan(y/x) + pi -> (pi/2, pi]
  • y < 0: arctan(y/x) - pi -> (-pi, -pi/2)
fn main() { use std::f64; let pi = f64::consts::PI; // All angles from horizontal right (+x) // 45 deg counter-clockwise let x1 = 3.0_f64; let y1 = -3.0_f64; // 135 deg clockwise let x2 = -3.0_f64; let y2 = 3.0_f64; let abs_difference_1 = (y1.atan2(x1) - (-pi/4.0)).abs(); let abs_difference_2 = (y2.atan2(x2) - 3.0*pi/4.0).abs(); assert!(abs_difference_1 < 1e-10); assert!(abs_difference_2 < 1e-10); }
use std::f64;

let pi = f64::consts::PI;
// All angles from horizontal right (+x)
// 45 deg counter-clockwise
let x1 = 3.0_f64;
let y1 = -3.0_f64;

// 135 deg clockwise
let x2 = -3.0_f64;
let y2 = 3.0_f64;

let abs_difference_1 = (y1.atan2(x1) - (-pi/4.0)).abs();
let abs_difference_2 = (y2.atan2(x2) - 3.0*pi/4.0).abs();

assert!(abs_difference_1 < 1e-10);
assert!(abs_difference_2 < 1e-10);

fn sin_cos(self) -> (f64, f64)1.0.0

Simultaneously computes the sine and cosine of the number, x. Returns (sin(x), cos(x)).

fn main() { use std::f64; let x = f64::consts::PI/4.0; let f = x.sin_cos(); let abs_difference_0 = (f.0 - x.sin()).abs(); let abs_difference_1 = (f.1 - x.cos()).abs(); assert!(abs_difference_0 < 1e-10); assert!(abs_difference_1 < 1e-10); }
use std::f64;

let x = f64::consts::PI/4.0;
let f = x.sin_cos();

let abs_difference_0 = (f.0 - x.sin()).abs();
let abs_difference_1 = (f.1 - x.cos()).abs();

assert!(abs_difference_0 < 1e-10);
assert!(abs_difference_1 < 1e-10);

fn exp_m1(self) -> f641.0.0

Returns e^(self) - 1 in a way that is accurate even if the number is close to zero.

fn main() { let x = 7.0_f64; // e^(ln(7)) - 1 let abs_difference = (x.ln().exp_m1() - 6.0).abs(); assert!(abs_difference < 1e-10); }
let x = 7.0_f64;

// e^(ln(7)) - 1
let abs_difference = (x.ln().exp_m1() - 6.0).abs();

assert!(abs_difference < 1e-10);

fn ln_1p(self) -> f641.0.0

Returns ln(1+n) (natural logarithm) more accurately than if the operations were performed separately.

fn main() { use std::f64; let x = f64::consts::E - 1.0; // ln(1 + (e - 1)) == ln(e) == 1 let abs_difference = (x.ln_1p() - 1.0).abs(); assert!(abs_difference < 1e-10); }
use std::f64;

let x = f64::consts::E - 1.0;

// ln(1 + (e - 1)) == ln(e) == 1
let abs_difference = (x.ln_1p() - 1.0).abs();

assert!(abs_difference < 1e-10);

fn sinh(self) -> f641.0.0

Hyperbolic sine function.

fn main() { use std::f64; let e = f64::consts::E; let x = 1.0_f64; let f = x.sinh(); // Solving sinh() at 1 gives `(e^2-1)/(2e)` let g = (e*e - 1.0)/(2.0*e); let abs_difference = (f - g).abs(); assert!(abs_difference < 1e-10); }
use std::f64;

let e = f64::consts::E;
let x = 1.0_f64;

let f = x.sinh();
// Solving sinh() at 1 gives `(e^2-1)/(2e)`
let g = (e*e - 1.0)/(2.0*e);
let abs_difference = (f - g).abs();

assert!(abs_difference < 1e-10);

fn cosh(self) -> f641.0.0

Hyperbolic cosine function.

fn main() { use std::f64; let e = f64::consts::E; let x = 1.0_f64; let f = x.cosh(); // Solving cosh() at 1 gives this result let g = (e*e + 1.0)/(2.0*e); let abs_difference = (f - g).abs(); // Same result assert!(abs_difference < 1.0e-10); }
use std::f64;

let e = f64::consts::E;
let x = 1.0_f64;
let f = x.cosh();
// Solving cosh() at 1 gives this result
let g = (e*e + 1.0)/(2.0*e);
let abs_difference = (f - g).abs();

// Same result
assert!(abs_difference < 1.0e-10);

fn tanh(self) -> f641.0.0

Hyperbolic tangent function.

fn main() { use std::f64; let e = f64::consts::E; let x = 1.0_f64; let f = x.tanh(); // Solving tanh() at 1 gives `(1 - e^(-2))/(1 + e^(-2))` let g = (1.0 - e.powi(-2))/(1.0 + e.powi(-2)); let abs_difference = (f - g).abs(); assert!(abs_difference < 1.0e-10); }
use std::f64;

let e = f64::consts::E;
let x = 1.0_f64;

let f = x.tanh();
// Solving tanh() at 1 gives `(1 - e^(-2))/(1 + e^(-2))`
let g = (1.0 - e.powi(-2))/(1.0 + e.powi(-2));
let abs_difference = (f - g).abs();

assert!(abs_difference < 1.0e-10);

fn asinh(self) -> f641.0.0

Inverse hyperbolic sine function.

fn main() { let x = 1.0_f64; let f = x.sinh().asinh(); let abs_difference = (f - x).abs(); assert!(abs_difference < 1.0e-10); }
let x = 1.0_f64;
let f = x.sinh().asinh();

let abs_difference = (f - x).abs();

assert!(abs_difference < 1.0e-10);

fn acosh(self) -> f641.0.0

Inverse hyperbolic cosine function.

fn main() { let x = 1.0_f64; let f = x.cosh().acosh(); let abs_difference = (f - x).abs(); assert!(abs_difference < 1.0e-10); }
let x = 1.0_f64;
let f = x.cosh().acosh();

let abs_difference = (f - x).abs();

assert!(abs_difference < 1.0e-10);

fn atanh(self) -> f641.0.0

Inverse hyperbolic tangent function.

fn main() { use std::f64; let e = f64::consts::E; let f = e.tanh().atanh(); let abs_difference = (f - e).abs(); assert!(abs_difference < 1.0e-10); }
use std::f64;

let e = f64::consts::E;
let f = e.tanh().atanh();

let abs_difference = (f - e).abs();

assert!(abs_difference < 1.0e-10);

Trait Implementations

impl UpperExp for f641.0.0

fn fmt(&self, fmt: &mut Formatter) -> Result<(), Error>

impl LowerExp for f641.0.0

fn fmt(&self, fmt: &mut Formatter) -> Result<(), Error>

impl Display for f641.0.0

fn fmt(&self, fmt: &mut Formatter) -> Result<(), Error>

impl Debug for f641.0.0

fn fmt(&self, fmt: &mut Formatter) -> Result<(), Error>

impl Default for f641.0.0

fn default() -> f64

impl Clone for f641.0.0

fn clone(&self) -> f64

Returns a deep copy of the value.

fn clone_from(&mut self, source: &Self)1.0.0

impl PartialOrd<f64> for f641.0.0

fn partial_cmp(&self, other: &f64) -> Option<Ordering>

fn lt(&self, other: &f64) -> bool

fn le(&self, other: &f64) -> bool

fn ge(&self, other: &f64) -> bool

fn gt(&self, other: &f64) -> bool

impl PartialEq<f64> for f641.0.0

fn eq(&self, other: &f64) -> bool

fn ne(&self, other: &f64) -> bool

impl RemAssign<f64> for f641.8.0

fn rem_assign(&mut self, other: f64)

impl DivAssign<f64> for f641.8.0

fn div_assign(&mut self, other: f64)

impl MulAssign<f64> for f641.8.0

fn mul_assign(&mut self, other: f64)

impl SubAssign<f64> for f641.8.0

fn sub_assign(&mut self, other: f64)

impl AddAssign<f64> for f641.8.0

fn add_assign(&mut self, other: f64)

impl<'a> Neg for &'a f641.0.0

type Output = f64::Output

fn neg(self) -> f64::Output

impl Neg for f641.0.0

type Output = f64

fn neg(self) -> f64

impl<'a, 'b> Rem<&'a f64> for &'b f641.0.0

type Output = f64::Output

fn rem(self, other: &'a f64) -> f64::Output

impl<'a> Rem<&'a f64> for f641.0.0

type Output = f64::Output

fn rem(self, other: &'a f64) -> f64::Output

impl<'a> Rem<f64> for &'a f641.0.0

type Output = f64::Output

fn rem(self, other: f64) -> f64::Output

impl Rem<f64> for f641.0.0

type Output = f64

fn rem(self, other: f64) -> f64

impl<'a, 'b> Div<&'a f64> for &'b f641.0.0

type Output = f64::Output

fn div(self, other: &'a f64) -> f64::Output

impl<'a> Div<&'a f64> for f641.0.0

type Output = f64::Output

fn div(self, other: &'a f64) -> f64::Output

impl<'a> Div<f64> for &'a f641.0.0

type Output = f64::Output

fn div(self, other: f64) -> f64::Output

impl Div<f64> for f641.0.0

type Output = f64

fn div(self, other: f64) -> f64

impl<'a, 'b> Mul<&'a f64> for &'b f641.0.0

type Output = f64::Output

fn mul(self, other: &'a f64) -> f64::Output

impl<'a> Mul<&'a f64> for f641.0.0

type Output = f64::Output

fn mul(self, other: &'a f64) -> f64::Output

impl<'a> Mul<f64> for &'a f641.0.0

type Output = f64::Output

fn mul(self, other: f64) -> f64::Output

impl Mul<f64> for f641.0.0

type Output = f64

fn mul(self, other: f64) -> f64

impl<'a, 'b> Sub<&'a f64> for &'b f641.0.0

type Output = f64::Output

fn sub(self, other: &'a f64) -> f64::Output

impl<'a> Sub<&'a f64> for f641.0.0

type Output = f64::Output

fn sub(self, other: &'a f64) -> f64::Output

impl<'a> Sub<f64> for &'a f641.0.0

type Output = f64::Output

fn sub(self, other: f64) -> f64::Output

impl Sub<f64> for f641.0.0

type Output = f64

fn sub(self, other: f64) -> f64

impl<'a, 'b> Add<&'a f64> for &'b f641.0.0

type Output = f64::Output

fn add(self, other: &'a f64) -> f64::Output

impl<'a> Add<&'a f64> for f641.0.0

type Output = f64::Output

fn add(self, other: &'a f64) -> f64::Output

impl<'a> Add<f64> for &'a f641.0.0

type Output = f64::Output

fn add(self, other: f64) -> f64::Output

impl Add<f64> for f641.0.0

type Output = f64

fn add(self, other: f64) -> f64

impl From<f32> for f641.5.0

fn from(small: f32) -> f64

impl From<u32> for f641.5.0

fn from(small: u32) -> f64

impl From<u16> for f641.5.0

fn from(small: u16) -> f64

impl From<u8> for f641.5.0

fn from(small: u8) -> f64

impl From<i32> for f641.5.0

fn from(small: i32) -> f64

impl From<i16> for f641.5.0

fn from(small: i16) -> f64

impl From<i8> for f641.5.0

fn from(small: i8) -> f64

impl One for f64

fn one() -> f64

Unstable (zero_one #27739)

: unsure of placement, wants to use associated constants

impl Zero for f64

fn zero() -> f64

Unstable (zero_one #27739)

: unsure of placement, wants to use associated constants

impl FromStr for f641.0.0

type Err = ParseFloatError

fn from_str(src: &str) -> Result<f64, ParseFloatError>

Converts a string in base 10 to a float. Accepts an optional decimal exponent.

This function accepts strings such as

  • '3.14'
  • '-3.14'
  • '2.5E10', or equivalently, '2.5e10'
  • '2.5E-10'
  • '.' (understood as 0)
  • '5.'
  • '.5', or, equivalently, '0.5'
  • 'inf', '-inf', 'NaN'

Leading and trailing whitespace represent an error.

Arguments

  • src - A string

Return value

Err(ParseFloatError) if the string did not represent a valid number. Otherwise, Ok(n) where n is the floating-point number represented by src.