Primitive Type f64 [−]
The 64-bit floating point type.
However, please note that examples are shared between the f64
and f32
primitive types. So it's normal if you see usage of f32
in there.
Methods
impl f64
fn is_nan(self) -> bool
1.0.0
Returns true
if this value is NaN
and false otherwise.
use std::f64; let nan = f64::NAN; let f = 7.0_f64; assert!(nan.is_nan()); assert!(!f.is_nan());
fn is_infinite(self) -> bool
1.0.0
Returns true
if this value is positive infinity or negative infinity and
false otherwise.
use std::f64; let f = 7.0f64; let inf = f64::INFINITY; let neg_inf = f64::NEG_INFINITY; let nan = f64::NAN; assert!(!f.is_infinite()); assert!(!nan.is_infinite()); assert!(inf.is_infinite()); assert!(neg_inf.is_infinite());
fn is_finite(self) -> bool
1.0.0
Returns true
if this number is neither infinite nor NaN
.
use std::f64; let f = 7.0f64; let inf: f64 = f64::INFINITY; let neg_inf: f64 = f64::NEG_INFINITY; let nan: f64 = f64::NAN; assert!(f.is_finite()); assert!(!nan.is_finite()); assert!(!inf.is_finite()); assert!(!neg_inf.is_finite());
fn is_normal(self) -> bool
1.0.0
Returns true
if the number is neither zero, infinite,
subnormal, or NaN
.
use std::f32; let min = f32::MIN_POSITIVE; // 1.17549435e-38f64 let max = f32::MAX; let lower_than_min = 1.0e-40_f32; let zero = 0.0f32; assert!(min.is_normal()); assert!(max.is_normal()); assert!(!zero.is_normal()); assert!(!f32::NAN.is_normal()); assert!(!f32::INFINITY.is_normal()); // Values between `0` and `min` are Subnormal. assert!(!lower_than_min.is_normal());
fn classify(self) -> FpCategory
1.0.0
Returns the floating point category of the number. If only one property is going to be tested, it is generally faster to use the specific predicate instead.
fn main() { use std::num::FpCategory; use std::f64; let num = 12.4_f64; let inf = f64::INFINITY; assert_eq!(num.classify(), FpCategory::Normal); assert_eq!(inf.classify(), FpCategory::Infinite); }use std::num::FpCategory; use std::f64; let num = 12.4_f64; let inf = f64::INFINITY; assert_eq!(num.classify(), FpCategory::Normal); assert_eq!(inf.classify(), FpCategory::Infinite);
fn integer_decode(self) -> (u64, i16, i8)
Returns the mantissa, base 2 exponent, and sign as integers, respectively.
The original number can be recovered by sign * mantissa * 2 ^ exponent
.
The floating point encoding is documented in the Reference.
#![feature(float_extras)] let num = 2.0f64; // (8388608, -22, 1) let (mantissa, exponent, sign) = num.integer_decode(); let sign_f = sign as f64; let mantissa_f = mantissa as f64; let exponent_f = num.powf(exponent as f64); // 1 * 8388608 * 2^(-22) == 2 let abs_difference = (sign_f * mantissa_f * exponent_f - num).abs(); assert!(abs_difference < 1e-10);
fn floor(self) -> f64
1.0.0
Returns the largest integer less than or equal to a number.
fn main() { let f = 3.99_f64; let g = 3.0_f64; assert_eq!(f.floor(), 3.0); assert_eq!(g.floor(), 3.0); }let f = 3.99_f64; let g = 3.0_f64; assert_eq!(f.floor(), 3.0); assert_eq!(g.floor(), 3.0);
fn ceil(self) -> f64
1.0.0
Returns the smallest integer greater than or equal to a number.
fn main() { let f = 3.01_f64; let g = 4.0_f64; assert_eq!(f.ceil(), 4.0); assert_eq!(g.ceil(), 4.0); }let f = 3.01_f64; let g = 4.0_f64; assert_eq!(f.ceil(), 4.0); assert_eq!(g.ceil(), 4.0);
fn round(self) -> f64
1.0.0
Returns the nearest integer to a number. Round half-way cases away from
0.0
.
let f = 3.3_f64; let g = -3.3_f64; assert_eq!(f.round(), 3.0); assert_eq!(g.round(), -3.0);
fn trunc(self) -> f64
1.0.0
Returns the integer part of a number.
fn main() { let f = 3.3_f64; let g = -3.7_f64; assert_eq!(f.trunc(), 3.0); assert_eq!(g.trunc(), -3.0); }let f = 3.3_f64; let g = -3.7_f64; assert_eq!(f.trunc(), 3.0); assert_eq!(g.trunc(), -3.0);
fn fract(self) -> f64
1.0.0
Returns the fractional part of a number.
fn main() { let x = 3.5_f64; let y = -3.5_f64; let abs_difference_x = (x.fract() - 0.5).abs(); let abs_difference_y = (y.fract() - (-0.5)).abs(); assert!(abs_difference_x < 1e-10); assert!(abs_difference_y < 1e-10); }let x = 3.5_f64; let y = -3.5_f64; let abs_difference_x = (x.fract() - 0.5).abs(); let abs_difference_y = (y.fract() - (-0.5)).abs(); assert!(abs_difference_x < 1e-10); assert!(abs_difference_y < 1e-10);
fn abs(self) -> f64
1.0.0
Computes the absolute value of self
. Returns NAN
if the
number is NAN
.
use std::f64; let x = 3.5_f64; let y = -3.5_f64; let abs_difference_x = (x.abs() - x).abs(); let abs_difference_y = (y.abs() - (-y)).abs(); assert!(abs_difference_x < 1e-10); assert!(abs_difference_y < 1e-10); assert!(f64::NAN.abs().is_nan());
fn signum(self) -> f64
1.0.0
Returns a number that represents the sign of self
.
1.0
if the number is positive,+0.0
orINFINITY
-1.0
if the number is negative,-0.0
orNEG_INFINITY
NAN
if the number isNAN
use std::f64; let f = 3.5_f64; assert_eq!(f.signum(), 1.0); assert_eq!(f64::NEG_INFINITY.signum(), -1.0); assert!(f64::NAN.signum().is_nan());
fn is_sign_positive(self) -> bool
1.0.0
Returns true
if self
's sign bit is positive, including
+0.0
and INFINITY
.
use std::f64; let nan: f64 = f64::NAN; let f = 7.0_f64; let g = -7.0_f64; assert!(f.is_sign_positive()); assert!(!g.is_sign_positive()); // Requires both tests to determine if is `NaN` assert!(!nan.is_sign_positive() && !nan.is_sign_negative());
fn is_positive(self) -> bool
1.0.0
: renamed to is_sign_positive
fn is_sign_negative(self) -> bool
1.0.0
Returns true
if self
's sign is negative, including -0.0
and NEG_INFINITY
.
use std::f64; let nan = f64::NAN; let f = 7.0_f64; let g = -7.0_f64; assert!(!f.is_sign_negative()); assert!(g.is_sign_negative()); // Requires both tests to determine if is `NaN`. assert!(!nan.is_sign_positive() && !nan.is_sign_negative());
fn is_negative(self) -> bool
1.0.0
: renamed to is_sign_negative
fn mul_add(self, a: f64, b: f64) -> f64
1.0.0
Fused multiply-add. Computes (self * a) + b
with only one rounding
error. This produces a more accurate result with better performance than
a separate multiplication operation followed by an add.
let m = 10.0_f64; let x = 4.0_f64; let b = 60.0_f64; // 100.0 let abs_difference = (m.mul_add(x, b) - (m*x + b)).abs(); assert!(abs_difference < 1e-10);
fn recip(self) -> f64
1.0.0
Takes the reciprocal (inverse) of a number, 1/x
.
let x = 2.0_f64; let abs_difference = (x.recip() - (1.0/x)).abs(); assert!(abs_difference < 1e-10);
fn powi(self, n: i32) -> f64
1.0.0
Raises a number to an integer power.
Using this function is generally faster than using powf
let x = 2.0_f64; let abs_difference = (x.powi(2) - x*x).abs(); assert!(abs_difference < 1e-10);
fn powf(self, n: f64) -> f64
1.0.0
Raises a number to a floating point power.
fn main() { let x = 2.0_f64; let abs_difference = (x.powf(2.0) - x*x).abs(); assert!(abs_difference < 1e-10); }let x = 2.0_f64; let abs_difference = (x.powf(2.0) - x*x).abs(); assert!(abs_difference < 1e-10);
fn sqrt(self) -> f64
1.0.0
Takes the square root of a number.
Returns NaN if self
is a negative number.
let positive = 4.0_f64; let negative = -4.0_f64; let abs_difference = (positive.sqrt() - 2.0).abs(); assert!(abs_difference < 1e-10); assert!(negative.sqrt().is_nan());
fn exp(self) -> f64
1.0.0
Returns e^(self)
, (the exponential function).
let one = 1.0_f64; // e^1 let e = one.exp(); // ln(e) - 1 == 0 let abs_difference = (e.ln() - 1.0).abs(); assert!(abs_difference < 1e-10);
fn exp2(self) -> f64
1.0.0
Returns 2^(self)
.
let f = 2.0_f64; // 2^2 - 4 == 0 let abs_difference = (f.exp2() - 4.0).abs(); assert!(abs_difference < 1e-10);
fn ln(self) -> f64
1.0.0
Returns the natural logarithm of the number.
fn main() { let one = 1.0_f64; // e^1 let e = one.exp(); // ln(e) - 1 == 0 let abs_difference = (e.ln() - 1.0).abs(); assert!(abs_difference < 1e-10); }let one = 1.0_f64; // e^1 let e = one.exp(); // ln(e) - 1 == 0 let abs_difference = (e.ln() - 1.0).abs(); assert!(abs_difference < 1e-10);
fn log(self, base: f64) -> f64
1.0.0
Returns the logarithm of the number with respect to an arbitrary base.
fn main() { let ten = 10.0_f64; let two = 2.0_f64; // log10(10) - 1 == 0 let abs_difference_10 = (ten.log(10.0) - 1.0).abs(); // log2(2) - 1 == 0 let abs_difference_2 = (two.log(2.0) - 1.0).abs(); assert!(abs_difference_10 < 1e-10); assert!(abs_difference_2 < 1e-10); }let ten = 10.0_f64; let two = 2.0_f64; // log10(10) - 1 == 0 let abs_difference_10 = (ten.log(10.0) - 1.0).abs(); // log2(2) - 1 == 0 let abs_difference_2 = (two.log(2.0) - 1.0).abs(); assert!(abs_difference_10 < 1e-10); assert!(abs_difference_2 < 1e-10);
fn log2(self) -> f64
1.0.0
Returns the base 2 logarithm of the number.
fn main() { let two = 2.0_f64; // log2(2) - 1 == 0 let abs_difference = (two.log2() - 1.0).abs(); assert!(abs_difference < 1e-10); }let two = 2.0_f64; // log2(2) - 1 == 0 let abs_difference = (two.log2() - 1.0).abs(); assert!(abs_difference < 1e-10);
fn log10(self) -> f64
1.0.0
Returns the base 10 logarithm of the number.
fn main() { let ten = 10.0_f64; // log10(10) - 1 == 0 let abs_difference = (ten.log10() - 1.0).abs(); assert!(abs_difference < 1e-10); }let ten = 10.0_f64; // log10(10) - 1 == 0 let abs_difference = (ten.log10() - 1.0).abs(); assert!(abs_difference < 1e-10);
fn to_degrees(self) -> f64
1.0.0
Converts radians to degrees.
fn main() { use std::f64::consts; let angle = consts::PI; let abs_difference = (angle.to_degrees() - 180.0).abs(); assert!(abs_difference < 1e-10); }use std::f64::consts; let angle = consts::PI; let abs_difference = (angle.to_degrees() - 180.0).abs(); assert!(abs_difference < 1e-10);
fn to_radians(self) -> f64
1.0.0
Converts degrees to radians.
fn main() { use std::f64::consts; let angle = 180.0_f64; let abs_difference = (angle.to_radians() - consts::PI).abs(); assert!(abs_difference < 1e-10); }use std::f64::consts; let angle = 180.0_f64; let abs_difference = (angle.to_radians() - consts::PI).abs(); assert!(abs_difference < 1e-10);
fn ldexp(x: f64, exp: isize) -> f64
Constructs a floating point number of x*2^exp
.
#![feature(float_extras)] // 3*2^2 - 12 == 0 let abs_difference = (f64::ldexp(3.0, 2) - 12.0).abs(); assert!(abs_difference < 1e-10);
fn frexp(self) -> (f64, isize)
Breaks the number into a normalized fraction and a base-2 exponent, satisfying:
self = x * 2^exp
0.5 <= abs(x) < 1.0
#![feature(float_extras)] let x = 4.0_f64; // (1/2)*2^3 -> 1 * 8/2 -> 4.0 let f = x.frexp(); let abs_difference_0 = (f.0 - 0.5).abs(); let abs_difference_1 = (f.1 as f64 - 3.0).abs(); assert!(abs_difference_0 < 1e-10); assert!(abs_difference_1 < 1e-10);
fn next_after(self, other: f64) -> f64
Returns the next representable floating-point value in the direction of
other
.
#![feature(float_extras)] let x = 1.0f32; let abs_diff = (x.next_after(2.0) - 1.00000011920928955078125_f32).abs(); assert!(abs_diff < 1e-10);
fn max(self, other: f64) -> f64
1.0.0
Returns the maximum of the two numbers.
fn main() { let x = 1.0_f64; let y = 2.0_f64; assert_eq!(x.max(y), y); }let x = 1.0_f64; let y = 2.0_f64; assert_eq!(x.max(y), y);
If one of the arguments is NaN, then the other argument is returned.
fn min(self, other: f64) -> f64
1.0.0
Returns the minimum of the two numbers.
fn main() { let x = 1.0_f64; let y = 2.0_f64; assert_eq!(x.min(y), x); }let x = 1.0_f64; let y = 2.0_f64; assert_eq!(x.min(y), x);
If one of the arguments is NaN, then the other argument is returned.
fn abs_sub(self, other: f64) -> f64
1.0.0
The positive difference of two numbers.
- If
self <= other
:0:0
- Else:
self - other
let x = 3.0_f64; let y = -3.0_f64; let abs_difference_x = (x.abs_sub(1.0) - 2.0).abs(); let abs_difference_y = (y.abs_sub(1.0) - 0.0).abs(); assert!(abs_difference_x < 1e-10); assert!(abs_difference_y < 1e-10);
fn cbrt(self) -> f64
1.0.0
Takes the cubic root of a number.
fn main() { let x = 8.0_f64; // x^(1/3) - 2 == 0 let abs_difference = (x.cbrt() - 2.0).abs(); assert!(abs_difference < 1e-10); }let x = 8.0_f64; // x^(1/3) - 2 == 0 let abs_difference = (x.cbrt() - 2.0).abs(); assert!(abs_difference < 1e-10);
fn hypot(self, other: f64) -> f64
1.0.0
Calculates the length of the hypotenuse of a right-angle triangle given
legs of length x
and y
.
let x = 2.0_f64; let y = 3.0_f64; // sqrt(x^2 + y^2) let abs_difference = (x.hypot(y) - (x.powi(2) + y.powi(2)).sqrt()).abs(); assert!(abs_difference < 1e-10);
fn sin(self) -> f64
1.0.0
Computes the sine of a number (in radians).
fn main() { use std::f64; let x = f64::consts::PI/2.0; let abs_difference = (x.sin() - 1.0).abs(); assert!(abs_difference < 1e-10); }use std::f64; let x = f64::consts::PI/2.0; let abs_difference = (x.sin() - 1.0).abs(); assert!(abs_difference < 1e-10);
fn cos(self) -> f64
1.0.0
Computes the cosine of a number (in radians).
fn main() { use std::f64; let x = 2.0*f64::consts::PI; let abs_difference = (x.cos() - 1.0).abs(); assert!(abs_difference < 1e-10); }use std::f64; let x = 2.0*f64::consts::PI; let abs_difference = (x.cos() - 1.0).abs(); assert!(abs_difference < 1e-10);
fn tan(self) -> f64
1.0.0
Computes the tangent of a number (in radians).
fn main() { use std::f64; let x = f64::consts::PI/4.0; let abs_difference = (x.tan() - 1.0).abs(); assert!(abs_difference < 1e-14); }use std::f64; let x = f64::consts::PI/4.0; let abs_difference = (x.tan() - 1.0).abs(); assert!(abs_difference < 1e-14);
fn asin(self) -> f64
1.0.0
Computes the arcsine of a number. Return value is in radians in the range [-pi/2, pi/2] or NaN if the number is outside the range [-1, 1].
fn main() { use std::f64; let f = f64::consts::PI / 2.0; // asin(sin(pi/2)) let abs_difference = (f.sin().asin() - f64::consts::PI / 2.0).abs(); assert!(abs_difference < 1e-10); }use std::f64; let f = f64::consts::PI / 2.0; // asin(sin(pi/2)) let abs_difference = (f.sin().asin() - f64::consts::PI / 2.0).abs(); assert!(abs_difference < 1e-10);
fn acos(self) -> f64
1.0.0
Computes the arccosine of a number. Return value is in radians in the range [0, pi] or NaN if the number is outside the range [-1, 1].
fn main() { use std::f64; let f = f64::consts::PI / 4.0; // acos(cos(pi/4)) let abs_difference = (f.cos().acos() - f64::consts::PI / 4.0).abs(); assert!(abs_difference < 1e-10); }use std::f64; let f = f64::consts::PI / 4.0; // acos(cos(pi/4)) let abs_difference = (f.cos().acos() - f64::consts::PI / 4.0).abs(); assert!(abs_difference < 1e-10);
fn atan(self) -> f64
1.0.0
Computes the arctangent of a number. Return value is in radians in the range [-pi/2, pi/2];
fn main() { let f = 1.0_f64; // atan(tan(1)) let abs_difference = (f.tan().atan() - 1.0).abs(); assert!(abs_difference < 1e-10); }let f = 1.0_f64; // atan(tan(1)) let abs_difference = (f.tan().atan() - 1.0).abs(); assert!(abs_difference < 1e-10);
fn atan2(self, other: f64) -> f64
1.0.0
Computes the four quadrant arctangent of self
(y
) and other
(x
).
x = 0
,y = 0
:0
x >= 0
:arctan(y/x)
->[-pi/2, pi/2]
y >= 0
:arctan(y/x) + pi
->(pi/2, pi]
y < 0
:arctan(y/x) - pi
->(-pi, -pi/2)
use std::f64; let pi = f64::consts::PI; // All angles from horizontal right (+x) // 45 deg counter-clockwise let x1 = 3.0_f64; let y1 = -3.0_f64; // 135 deg clockwise let x2 = -3.0_f64; let y2 = 3.0_f64; let abs_difference_1 = (y1.atan2(x1) - (-pi/4.0)).abs(); let abs_difference_2 = (y2.atan2(x2) - 3.0*pi/4.0).abs(); assert!(abs_difference_1 < 1e-10); assert!(abs_difference_2 < 1e-10);
fn sin_cos(self) -> (f64, f64)
1.0.0
Simultaneously computes the sine and cosine of the number, x
. Returns
(sin(x), cos(x))
.
use std::f64; let x = f64::consts::PI/4.0; let f = x.sin_cos(); let abs_difference_0 = (f.0 - x.sin()).abs(); let abs_difference_1 = (f.1 - x.cos()).abs(); assert!(abs_difference_0 < 1e-10); assert!(abs_difference_1 < 1e-10);
fn exp_m1(self) -> f64
1.0.0
Returns e^(self) - 1
in a way that is accurate even if the
number is close to zero.
let x = 7.0_f64; // e^(ln(7)) - 1 let abs_difference = (x.ln().exp_m1() - 6.0).abs(); assert!(abs_difference < 1e-10);
fn ln_1p(self) -> f64
1.0.0
Returns ln(1+n)
(natural logarithm) more accurately than if
the operations were performed separately.
use std::f64; let x = f64::consts::E - 1.0; // ln(1 + (e - 1)) == ln(e) == 1 let abs_difference = (x.ln_1p() - 1.0).abs(); assert!(abs_difference < 1e-10);
fn sinh(self) -> f64
1.0.0
Hyperbolic sine function.
fn main() { use std::f64; let e = f64::consts::E; let x = 1.0_f64; let f = x.sinh(); // Solving sinh() at 1 gives `(e^2-1)/(2e)` let g = (e*e - 1.0)/(2.0*e); let abs_difference = (f - g).abs(); assert!(abs_difference < 1e-10); }use std::f64; let e = f64::consts::E; let x = 1.0_f64; let f = x.sinh(); // Solving sinh() at 1 gives `(e^2-1)/(2e)` let g = (e*e - 1.0)/(2.0*e); let abs_difference = (f - g).abs(); assert!(abs_difference < 1e-10);
fn cosh(self) -> f64
1.0.0
Hyperbolic cosine function.
fn main() { use std::f64; let e = f64::consts::E; let x = 1.0_f64; let f = x.cosh(); // Solving cosh() at 1 gives this result let g = (e*e + 1.0)/(2.0*e); let abs_difference = (f - g).abs(); // Same result assert!(abs_difference < 1.0e-10); }use std::f64; let e = f64::consts::E; let x = 1.0_f64; let f = x.cosh(); // Solving cosh() at 1 gives this result let g = (e*e + 1.0)/(2.0*e); let abs_difference = (f - g).abs(); // Same result assert!(abs_difference < 1.0e-10);
fn tanh(self) -> f64
1.0.0
Hyperbolic tangent function.
fn main() { use std::f64; let e = f64::consts::E; let x = 1.0_f64; let f = x.tanh(); // Solving tanh() at 1 gives `(1 - e^(-2))/(1 + e^(-2))` let g = (1.0 - e.powi(-2))/(1.0 + e.powi(-2)); let abs_difference = (f - g).abs(); assert!(abs_difference < 1.0e-10); }use std::f64; let e = f64::consts::E; let x = 1.0_f64; let f = x.tanh(); // Solving tanh() at 1 gives `(1 - e^(-2))/(1 + e^(-2))` let g = (1.0 - e.powi(-2))/(1.0 + e.powi(-2)); let abs_difference = (f - g).abs(); assert!(abs_difference < 1.0e-10);
fn asinh(self) -> f64
1.0.0
Inverse hyperbolic sine function.
fn main() { let x = 1.0_f64; let f = x.sinh().asinh(); let abs_difference = (f - x).abs(); assert!(abs_difference < 1.0e-10); }let x = 1.0_f64; let f = x.sinh().asinh(); let abs_difference = (f - x).abs(); assert!(abs_difference < 1.0e-10);
fn acosh(self) -> f64
1.0.0
Inverse hyperbolic cosine function.
fn main() { let x = 1.0_f64; let f = x.cosh().acosh(); let abs_difference = (f - x).abs(); assert!(abs_difference < 1.0e-10); }let x = 1.0_f64; let f = x.cosh().acosh(); let abs_difference = (f - x).abs(); assert!(abs_difference < 1.0e-10);
fn atanh(self) -> f64
1.0.0
Inverse hyperbolic tangent function.
fn main() { use std::f64; let e = f64::consts::E; let f = e.tanh().atanh(); let abs_difference = (f - e).abs(); assert!(abs_difference < 1.0e-10); }use std::f64; let e = f64::consts::E; let f = e.tanh().atanh(); let abs_difference = (f - e).abs(); assert!(abs_difference < 1.0e-10);
Trait Implementations
impl UpperExp for f64
1.0.0
impl LowerExp for f64
1.0.0
impl Display for f64
1.0.0
impl Debug for f64
1.0.0
impl Default for f64
1.0.0
impl Clone for f64
1.0.0
fn clone(&self) -> f64
Returns a deep copy of the value.
fn clone_from(&mut self, source: &Self)
1.0.0
impl PartialOrd<f64> for f64
1.0.0
fn partial_cmp(&self, other: &f64) -> Option<Ordering>
fn lt(&self, other: &f64) -> bool
fn le(&self, other: &f64) -> bool
fn ge(&self, other: &f64) -> bool
fn gt(&self, other: &f64) -> bool
impl PartialEq<f64> for f64
1.0.0
impl RemAssign<f64> for f64
1.8.0
fn rem_assign(&mut self, other: f64)
impl DivAssign<f64> for f64
1.8.0
fn div_assign(&mut self, other: f64)
impl MulAssign<f64> for f64
1.8.0
fn mul_assign(&mut self, other: f64)
impl SubAssign<f64> for f64
1.8.0
fn sub_assign(&mut self, other: f64)
impl AddAssign<f64> for f64
1.8.0
fn add_assign(&mut self, other: f64)
impl<'a> Neg for &'a f64
1.0.0
impl Neg for f64
1.0.0
impl<'a, 'b> Rem<&'a f64> for &'b f64
1.0.0
impl<'a> Rem<&'a f64> for f64
1.0.0
impl<'a> Rem<f64> for &'a f64
1.0.0
impl Rem<f64> for f64
1.0.0
impl<'a, 'b> Div<&'a f64> for &'b f64
1.0.0
impl<'a> Div<&'a f64> for f64
1.0.0
impl<'a> Div<f64> for &'a f64
1.0.0
impl Div<f64> for f64
1.0.0
impl<'a, 'b> Mul<&'a f64> for &'b f64
1.0.0
impl<'a> Mul<&'a f64> for f64
1.0.0
impl<'a> Mul<f64> for &'a f64
1.0.0
impl Mul<f64> for f64
1.0.0
impl<'a, 'b> Sub<&'a f64> for &'b f64
1.0.0
impl<'a> Sub<&'a f64> for f64
1.0.0
impl<'a> Sub<f64> for &'a f64
1.0.0
impl Sub<f64> for f64
1.0.0
impl<'a, 'b> Add<&'a f64> for &'b f64
1.0.0
impl<'a> Add<&'a f64> for f64
1.0.0
impl<'a> Add<f64> for &'a f64
1.0.0
impl Add<f64> for f64
1.0.0
impl From<f32> for f64
1.5.0
impl From<u32> for f64
1.5.0
impl From<u16> for f64
1.5.0
impl From<u8> for f64
1.5.0
impl From<i32> for f64
1.5.0
impl From<i16> for f64
1.5.0
impl From<i8> for f64
1.5.0
impl One for f64
impl Zero for f64
impl FromStr for f64
1.0.0
type Err = ParseFloatError
fn from_str(src: &str) -> Result<f64, ParseFloatError>
Converts a string in base 10 to a float. Accepts an optional decimal exponent.
This function accepts strings such as
- '3.14'
- '-3.14'
- '2.5E10', or equivalently, '2.5e10'
- '2.5E-10'
- '.' (understood as 0)
- '5.'
- '.5', or, equivalently, '0.5'
- 'inf', '-inf', 'NaN'
Leading and trailing whitespace represent an error.
Arguments
- src - A string
Return value
Err(ParseFloatError)
if the string did not represent a valid
number. Otherwise, Ok(n)
where n
is the floating-point
number represented by src
.